This file is indexed.

/usr/share/axiom-20170501/src/algebra/FRIDEAL.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
)abbrev domain FRIDEAL FractionalIdeal
++ Author: Manuel Bronstein
++ Date Created: 27 Jan 1989
++ Date Last Updated: 30 July 1993
++ Description:
++ Fractional ideals in a framed algebra.

FractionalIdeal(R, F, UP, A) : SIG == CODE where
  R : EuclideanDomain
  F : QuotientFieldCategory R
  UP : UnivariatePolynomialCategory F
  A : Join(FramedAlgebra(F, UP), RetractableTo F)

  VF  ==> Vector F
  VA  ==> Vector A
  UPA ==> SparseUnivariatePolynomial A
  QF  ==> Fraction UP

  SIG ==> Group with

    ideal : VA -> %
      ++ ideal([f1,...,fn]) returns the ideal \spad{(f1,...,fn)}.

    basis : % -> VA
      ++ basis((f1,...,fn)) returns the vector \spad{[f1,...,fn]}.

    norm : % -> F
      ++ norm(I) returns the norm of the ideal I.

    numer : % -> VA
      ++ numer(1/d * (f1,...,fn)) = the vector \spad{[f1,...,fn]}.

    denom : % -> R
      ++ denom(1/d * (f1,...,fn)) returns d.

    minimize: % -> %
      ++ minimize(I) returns a reduced set of generators for \spad{I}.

    randomLC: (NonNegativeInteger, VA) -> A
      ++ randomLC(n,x) should be local but conditional.

  CODE ==> add

    import CommonDenominator(R, F, VF)
    import MatrixCommonDenominator(UP, QF)
    import InnerCommonDenominator(R, F, List R, List F)
    import MatrixCategoryFunctions2(F, Vector F, Vector F, Matrix F,
                        UP, Vector UP, Vector UP, Matrix UP)
    import MatrixCategoryFunctions2(UP, Vector UP, Vector UP,
                        Matrix UP, F, Vector F, Vector F, Matrix F)
    import MatrixCategoryFunctions2(UP, Vector UP, Vector UP,
                        Matrix UP, QF, Vector QF, Vector QF, Matrix QF)

    Rep := Record(num:VA, den:R)

    poly    : % -> UPA
    invrep  : Matrix F -> A
    upmat   : (A, NonNegativeInteger) -> Matrix UP
    summat  : % -> Matrix UP
    num2O   : VA -> OutputForm
    agcd    : List A -> R
    vgcd    : VF -> R
    mkIdeal : (VA, R) -> %
    intIdeal: (List A, R) -> %
    ret?    : VA -> Boolean
    tryRange: (NonNegativeInteger, VA, R, %) -> Union(%, "failed")

    1               == [[1]$VA, 1]

    numer i         == i.num

    denom i         == i.den

    mkIdeal(v, d)   == [v, d]

    invrep m        == represents(transpose(m) * coordinates(1$A))

    upmat(x, i)     == map(s +-> monomial(s, i)$UP, regularRepresentation x)

    ret? v          == any?(s+->retractIfCan(s)@Union(F,"failed") case F, v)

    x = y           == denom(x) = denom(y) and numer(x) = numer(y)

    agcd l  == reduce("gcd", [vgcd coordinates a for a in l]$List(R), 0)

    norm i ==
      ("gcd"/[retract(u)@R for u in coefficients determinant summat i])
              / denom(i) ** rank()$A

    tryRange(range, nm, nrm, i) ==
      for j in 0..10 repeat
        a := randomLC(10 * range, nm)
        unit? gcd((retract(norm a)@R exquo nrm)::R, nrm) =>
                                return intIdeal([nrm::F::A, a], denom i)
      "failed"

    summat i ==
      m := minIndex(v := numer i)
      reduce("+",
            [upmat(qelt(v, j + m), j) for j in 0..#v-1]$List(Matrix UP))

    inv i ==
      m  := inverse(map(s+->s::QF, summat i))::Matrix(QF)
      cd  := splitDenominator(denom(i)::F::UP::QF * m)
      cd2 := splitDenominator coefficients(cd.den)
      invd:= cd2.den / reduce("gcd", cd2.num)
      d   := reduce("max", [degree p for p in parts(cd.num)])
      ideal
        [invd * invrep map(s+->coefficient(s, j), cd.num) for j in 0..d]$VA

    ideal v ==
      d := reduce("lcm", [commonDenominator coordinates qelt(v, i)
                          for i in minIndex v .. maxIndex v]$List(R))
      intIdeal([d::F * qelt(v, i) for i in minIndex v .. maxIndex v], d)

    intIdeal(l, d) ==
      lr := empty()$List(R)
      nr := empty()$List(A)
      for x in removeDuplicates l repeat
        if (u := retractIfCan(x)@Union(F, "failed")) case F
          then lr := concat(retract(u::F)@R, lr)
          else nr := concat(x, nr)
      r    := reduce("gcd", lr, 0)
      g    := agcd nr
      a    := (r quo (b := gcd(gcd(d, r), g)))::F::A
      d    := d quo b
      r ^= 0 and ((g exquo r) case R) => mkIdeal([a], d)
      invb := inv(b::F)
      va:VA := [invb * m for m in nr]
      zero? a => mkIdeal(va, d)
      mkIdeal(concat(a, va), d)

    vgcd v ==
      reduce("gcd",
             [retract(v.i)@R for i in minIndex v .. maxIndex v]$List(R))

    poly i ==
      m := minIndex(v := numer i)
      +/[monomial(qelt(v, i + m), i) for i in 0..#v-1]

    i1 * i2 ==
      intIdeal(coefficients(poly i1 * poly i2), denom i1 * denom i2)

    i:$ ** m:Integer ==
      m < 0 => inv(i) ** (-m)
      n := m::NonNegativeInteger
      v := numer i
      intIdeal([qelt(v, j) ** n for j in minIndex v .. maxIndex v],
               denom(i) ** n)

    num2O v ==
      paren [qelt(v, i)::OutputForm
             for i in minIndex v .. maxIndex v]$List(OutputForm)

    basis i ==
      v := numer i
      d := inv(denom(i)::F)
      [d * qelt(v, j) for j in minIndex v .. maxIndex v]

    coerce(i:$):OutputForm ==
      nm := num2O numer i
      (denom i = 1) => nm
      (1::Integer::OutputForm) / (denom(i)::OutputForm) * nm

    if F has Finite then

      randomLC(m, v) ==
        +/[random()$F * qelt(v, j) for j in minIndex v .. maxIndex v]

    else

      randomLC(m, v) ==
        +/[(random()$Integer rem m::Integer) * qelt(v, j)
            for j in minIndex v .. maxIndex v]

    minimize i ==
      n := (#(nm := numer i))
      (n = 1) or (n < 3 and ret? nm) => i
      nrm    := retract(norm mkIdeal(nm, 1))@R
      for range in 1..5 repeat
        (u := tryRange(range, nm, nrm, i)) case $ => return(u::$)
      i