This file is indexed.

/usr/share/axiom-20170501/src/algebra/FS2EXPXP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
)abbrev package FS2EXPXP FunctionSpaceToExponentialExpansion
++ Author: Clifton J. Williamson
++ Date Created: 17 August 1992
++ Date Last Updated: 2 December 1994
++ Description:
++ This package converts expressions in some function space to exponential
++ expansions.

FunctionSpaceToExponentialExpansion(R,FE,x,cen) : SIG == CODE where
  R : Join(GcdDomain,OrderedSet,RetractableTo Integer,
           LinearlyExplicitRingOver Integer)
  FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,
            FunctionSpace R)
  x : Symbol
  cen : FE

  B        ==> Boolean
  BOP      ==> BasicOperator
  Expon    ==> Fraction Integer
  I        ==> Integer
  NNI      ==> NonNegativeInteger
  K        ==> Kernel FE
  L        ==> List
  RN       ==> Fraction Integer
  S        ==> String
  SY       ==> Symbol
  PCL      ==> PolynomialCategoryLifting(IndexedExponents K,K,R,SMP,FE)
  POL      ==> Polynomial R
  SMP      ==> SparseMultivariatePolynomial(R,K)
  SUP      ==> SparseUnivariatePolynomial Polynomial R
  UTS      ==> UnivariateTaylorSeries(FE,x,cen)
  ULS      ==> UnivariateLaurentSeries(FE,x,cen)
  UPXS     ==> UnivariatePuiseuxSeries(FE,x,cen)
  EFULS    ==> ElementaryFunctionsUnivariateLaurentSeries(FE,UTS,ULS)
  EFUPXS   ==> ElementaryFunctionsUnivariatePuiseuxSeries(FE,ULS,UPXS,EFULS)
  FS2UPS   ==> FunctionSpaceToUnivariatePowerSeries(R,FE,RN,UPXS,EFUPXS,x)
  EXPUPXS  ==> ExponentialOfUnivariatePuiseuxSeries(FE,x,cen)
  UPXSSING ==> UnivariatePuiseuxSeriesWithExponentialSingularity(R,FE,x,cen)
  XXP      ==> ExponentialExpansion(R,FE,x,cen)
  Problem  ==> Record(func:String,prob:String)
  Result   ==> Union(%series:UPXS,%problem:Problem)
  XResult  ==> Union(%expansion:XXP,%problem:Problem)
  SIGNEF   ==> ElementaryFunctionSign(R,FE)

  SIG ==> with

    exprToXXP : (FE,B) -> XResult
      ++ exprToXXP(fcn,posCheck?) converts the expression \spad{fcn} to
      ++ an exponential expansion.  If \spad{posCheck?} is true,
      ++ log's of negative numbers are not allowed nor are nth roots of
      ++ negative numbers with n even.  If \spad{posCheck?} is false,
      ++ these are allowed.

    localAbs : FE -> FE
      ++ localAbs(fcn) = \spad{abs(fcn)} or \spad{sqrt(fcn**2)} depending
      ++ on whether or not FE has a function \spad{abs}.  This should be
      ++ a local function, but the compiler won't allow it.

  CODE ==> add

    import FS2UPS  -- conversion of functional expressions to Puiseux series
    import EFUPXS  -- partial transcendental funtions on UPXS

    ratIfCan            : FE -> Union(RN,"failed")
    stateSeriesProblem  : (S,S) -> Result
    stateProblem        : (S,S) -> XResult
    newElem             : FE -> FE
    smpElem             : SMP -> FE
    k2Elem              : K -> FE
    iExprToXXP          : (FE,B) -> XResult
    listToXXP           : (L FE,B,XXP,(XXP,XXP) -> XXP) -> XResult
    isNonTrivPower      : FE -> Union(Record(val:FE,exponent:I),"failed")
    negativePowerOK?    : UPXS -> Boolean
    powerToXXP          : (FE,I,B) -> XResult
    carefulNthRootIfCan : (UPXS,NNI,B) -> Result
    nthRootXXPIfCan     : (XXP,NNI,B) -> XResult
    nthRootToXXP        : (FE,NNI,B) -> XResult
    genPowerToXXP       : (L FE,B) -> XResult
    kernelToXXP         : (K,B) -> XResult
    genExp              : (UPXS,B) -> Result
    exponential         : (UPXS,B) -> XResult
    expToXXP            : (FE,B) -> XResult
    genLog              : (UPXS,B) -> Result
    logToXXP            : (FE,B) -> XResult
    applyIfCan          : (UPXS -> Union(UPXS,"failed"),FE,S,B) -> XResult
    applyBddIfCan       : (FE,UPXS -> Union(UPXS,"failed"),FE,S,B) -> XResult
    tranToXXP           : (K,FE,B) -> XResult
    contOnReals?        : S -> B
    bddOnReals?         : S -> B
    opsInvolvingX       : FE -> L BOP
    opInOpList?         : (SY,L BOP) -> B
    exponential?        : FE -> B
    productOfNonZeroes? : FE -> B
    atancotToXXP        : (FE,FE,B,I) -> XResult

    ZEROCOUNT : RN := 1000/1
    -- number of zeroes to be removed when taking logs or nth roots

--% retractions

    ratIfCan fcn == retractIfCan(fcn)@Union(RN,"failed")

--% 'problems' with conversion

    stateSeriesProblem(function,problem) ==
      -- records the problem which occured in converting an expression
      -- to a power series
      [[function,problem]]

    stateProblem(function,problem) ==
      -- records the problem which occured in converting an expression
      -- to an exponential expansion
      [[function,problem]]

--% normalizations

    newElem f ==
      -- rewrites a functional expression; all trig functions are
      -- expressed in terms of sin and cos; all hyperbolic trig
      -- functions are expressed in terms of exp; all inverse
      -- hyperbolic trig functions are expressed in terms of exp
      -- and log
      smpElem(numer f) / smpElem(denom f)

    smpElem p == map(k2Elem,(x1:R):FE+->x1::FE,p)$PCL

    k2Elem k ==
    -- rewrites a kernel; all trig functions are
    -- expressed in terms of sin and cos; all hyperbolic trig
    -- functions are expressed in terms of exp
      null(args := [newElem a for a in argument k]) => k :: FE
      iez  := inv(ez  := exp(z := first args))
      sinz := sin z; cosz := cos z
      is?(k,"tan" :: SY)  => sinz / cosz
      is?(k,"cot" :: SY)  => cosz / sinz
      is?(k,"sec" :: SY)  => inv cosz
      is?(k,"csc" :: SY)  => inv sinz
      is?(k,"sinh" :: SY) => (ez - iez) / (2 :: FE)
      is?(k,"cosh" :: SY) => (ez + iez) / (2 :: FE)
      is?(k,"tanh" :: SY) => (ez - iez) / (ez + iez)
      is?(k,"coth" :: SY) => (ez + iez) / (ez - iez)
      is?(k,"sech" :: SY) => 2 * inv(ez + iez)
      is?(k,"csch" :: SY) => 2 * inv(ez - iez)
      is?(k,"acosh" :: SY) => log(sqrt(z**2 - 1) + z)
      is?(k,"atanh" :: SY) => log((z + 1) / (1 - z)) / (2 :: FE)
      is?(k,"acoth" :: SY) => log((z + 1) / (z - 1)) / (2 :: FE)
      is?(k,"asech" :: SY) => log((inv z) + sqrt(inv(z**2) - 1))
      is?(k,"acsch" :: SY) => log((inv z) + sqrt(1 + inv(z**2)))
      (operator k) args

--% general conversion function

    exprToXXP(fcn,posCheck?) == iExprToXXP(newElem fcn,posCheck?)

    iExprToXXP(fcn,posCheck?) ==
      -- converts a functional expression to an exponential expansion
      --!! The following line is commented out so that expressions of
      --!! the form a**b will be normalized to exp(b * log(a)) even if
      --!! 'a' and 'b' do not involve the limiting variable 'x'.
      --!!                         - cjw 1 Dec 94
      --not member?(x,variables fcn) => [monomial(fcn,0)$UPXS :: XXP]
      (poly := retractIfCan(fcn)@Union(POL,"failed")) case POL =>
        [exprToUPS(fcn,false,"real:two sides").%series :: XXP]
      (sum := isPlus fcn) case L(FE) =>
        listToXXP(sum::L(FE),posCheck?,0,(y1:XXP,y2:XXP):XXP +-> y1+y2)
      (prod := isTimes fcn) case L(FE) =>
        listToXXP(prod :: L(FE),posCheck?,1,(y1:XXP,y2:XXP):XXP +-> y1*y2)
      (expt := isNonTrivPower fcn) case Record(val:FE,exponent:I) =>
        power := expt :: Record(val:FE,exponent:I)
        powerToXXP(power.val,power.exponent,posCheck?)
      (ker := retractIfCan(fcn)@Union(K,"failed")) case K =>
        kernelToXXP(ker :: K,posCheck?)
      error "exprToXXP: neither a sum, product, power, nor kernel"

--% sums and products

    listToXXP(list,posCheck?,ans,op) ==
      -- converts each element of a list of expressions to an exponential
      -- expansion and returns the sum of these expansions, when 'op' is +
      -- and 'ans' is 0, or the product of these expansions, when 'op' is *
      -- and 'ans' is 1
      while not null list repeat
        (term := iExprToXXP(first list,posCheck?)) case %problem =>
          return term
        ans := op(ans,term.%expansion)
        list := rest list
      [ans]

--% nth roots and integral powers

    isNonTrivPower fcn ==
      -- is the function a power with exponent other than 0 or 1?
      (expt := isPower fcn) case "failed" => "failed"
      power := expt :: Record(val:FE,exponent:I)
      (power.exponent = 1) => "failed"
      power

    negativePowerOK? upxs ==
      -- checks the lower order coefficient of a Puiseux series;
      -- the coefficient may be inverted only if
      -- (a) the only function involving x is 'log', or
      -- (b) the lowest order coefficient is a product of exponentials
      --     and functions not involving x
      deg := degree upxs
      if (coef := coefficient(upxs,deg)) = 0 then
        deg := order(upxs,deg + ZEROCOUNT :: Expon)
        (coef := coefficient(upxs,deg)) = 0 =>
          error "inverse of series with many leading zero coefficients"
      xOpList := opsInvolvingX coef
      -- only function involving x is 'log'
      (null xOpList) => true
      (null rest xOpList and is?(first xOpList,"log" :: SY)) => true
      -- lowest order coefficient is a product of exponentials and
      -- functions not involving x
      productOfNonZeroes? coef => true
      false

    powerToXXP(fcn,n,posCheck?) ==
      -- converts an integral power to an exponential expansion
      (b := iExprToXXP(fcn,posCheck?)) case %problem => b
      xxp := b.%expansion
      n > 0 => [xxp ** n]
      -- a Puiseux series will be reciprocated only if n < 0 and
      -- numerator of 'xxp' has exactly one monomial
      numberOfMonomials(num := numer xxp) > 1 => [xxp ** n]
      negativePowerOK? leadingCoefficient num =>
        (rec := recip num) case "failed" => error "FS2EXPXP: can't happen"
        nn := (-n) :: NNI
        [(((denom xxp) ** nn) * ((rec :: UPXSSING) ** nn)) :: XXP]
      --!! we may want to create a fraction instead of trying to
      --!! reciprocate the numerator
      stateProblem("inv","lowest order coefficient involves x")

    carefulNthRootIfCan(ups,n,posCheck?) ==
      -- similar to 'nthRootIfCan', but it is fussy about the series
      -- it takes as an argument.  If 'n' is EVEN and 'posCheck?'
      -- is truem then the leading coefficient of the series must
      -- be POSITIVE.  In this case, if 'rightOnly?' is false, the
      -- order of the series must be zero.  The idea is that the
      -- series represents a real function of a real variable, and
      -- we want a unique real nth root defined on a neighborhood
      -- of zero.
      n < 1 => error "nthRoot: n must be positive"
      deg := degree ups
      if (coef := coefficient(ups,deg)) = 0 then
        deg := order(ups,deg + ZEROCOUNT :: Expon)
        (coef := coefficient(ups,deg)) = 0 =>
          error "log of series with many leading zero coefficients"
      -- if 'posCheck?' is true, we do not allow nth roots of negative
      -- numbers when n in even
      if even?(n :: I) then
        if posCheck? and ((signum := sign(coef)$SIGNEF) case I) then
          (signum :: I) = -1 =>
            return stateSeriesProblem("nth root","root of negative number")
      (ans := nthRootIfCan(ups,n)) case "failed" =>
        stateSeriesProblem("nth root","no nth root")
      [ans :: UPXS]

    nthRootXXPIfCan(xxp,n,posCheck?) ==
      num := numer xxp; den := denom xxp
      not zero?(reductum num) or not zero?(reductum den) =>
       stateProblem("nth root","several monomials in numerator or denominator")
      nInv : RN := 1/n
      newNum :=
        coef : UPXS :=
          root := carefulNthRootIfCan(leadingCoefficient num,n,posCheck?)
          root case %problem => return [root.%problem]
          root.%series
        deg := (nInv :: FE) * (degree num)
        monomial(coef,deg)
      newDen :=
        coef : UPXS :=
          root := carefulNthRootIfCan(leadingCoefficient den,n,posCheck?)
          root case %problem => return [root.%problem]
          root.%series
        deg := (nInv :: FE) * (degree den)
        monomial(coef,deg)
      [newNum/newDen]

    nthRootToXXP(arg,n,posCheck?) ==
      -- converts an nth root to a power series
      -- this is not used in the limit package, so the series may
      -- have non-zero order, in which case nth roots may not be unique
      (result := iExprToXXP(arg,posCheck?)) case %problem => [result.%problem]
      ans := nthRootXXPIfCan(result.%expansion,n,posCheck?)
      ans case %problem => [ans.%problem]
      [ans.%expansion]

--% general powers f(x) ** g(x)

    genPowerToXXP(args,posCheck?) ==
      -- converts a power f(x) ** g(x) to an exponential expansion
      (logBase := logToXXP(first args,posCheck?)) case %problem =>
        logBase
      (expon := iExprToXXP(second args,posCheck?)) case %problem =>
        expon
      xxp := (expon.%expansion) * (logBase.%expansion)
      (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" =>
        stateProblem("exp","multiply nested exponential")
      exponential(f,posCheck?)

--% kernels

    kernelToXXP(ker,posCheck?) ==
      -- converts a kernel to a power series
      (sym := symbolIfCan(ker)) case Symbol =>
        (sym :: Symbol) = x => [monomial(1,1)$UPXS :: XXP]
        [monomial(ker :: FE,0)$UPXS :: XXP]
      empty?(args := argument ker) => [monomial(ker :: FE,0)$UPXS :: XXP]
      empty? rest args =>
        arg := first args
        is?(ker,"%paren" :: Symbol) => iExprToXXP(arg,posCheck?)
        is?(ker,"log" :: Symbol) => logToXXP(arg,posCheck?)
        is?(ker,"exp" :: Symbol) => expToXXP(arg,posCheck?)
        tranToXXP(ker,arg,posCheck?)
      is?(ker,"%power" :: Symbol) => genPowerToXXP(args,posCheck?)
      is?(ker,"nthRoot" :: Symbol) =>
        n := retract(second args)@I
        nthRootToXXP(first args,n :: NNI,posCheck?)
      stateProblem(string name ker,"unknown kernel")

--% exponentials and logarithms

    genExp(ups,posCheck?) ==
      -- If the series has order zero and the constant term a0 of the
      -- series involves x, the function tries to expand exp(a0) as
      -- a power series.
      (deg := order(ups,1)) < 0 =>
        -- this "can't happen"
        error "exp of function with sigularity"
      deg > 0 => [exp(ups)]
      lc := coefficient(ups,0); varOpList := opsInvolvingX lc
      not opInOpList?("log" :: Symbol,varOpList) => [exp(ups)]
      -- try to fix exp(lc) if necessary
      expCoef := normalize(exp lc,x)$ElementaryFunctionStructurePackage(R,FE)
      result := exprToGenUPS(expCoef,posCheck?,"real:right side")$FS2UPS
      --!! will deal with problems in limitPlus in EXPEXPAN
      --result case %problem => result
      result case %problem => [exp(ups)]
      [(result.%series) * exp(ups - monomial(lc,0))]

    exponential(f,posCheck?) ==
      singPart := truncate(f,0) - (coefficient(f,0) :: UPXS)
      taylorPart := f - singPart
      expon := exponential(singPart)$EXPUPXS
      (coef := genExp(taylorPart,posCheck?)) case %problem => [coef.%problem]
      [monomial(coef.%series,expon)$UPXSSING :: XXP]

    expToXXP(arg,posCheck?) ==
      (result := iExprToXXP(arg,posCheck?)) case %problem => result
      xxp := result.%expansion
      (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" =>
        stateProblem("exp","multiply nested exponential")
      exponential(f,posCheck?)

    genLog(ups,posCheck?) ==
      deg := degree ups
      if (coef := coefficient(ups,deg)) = 0 then
        deg := order(ups,deg + ZEROCOUNT)
        (coef := coefficient(ups,deg)) = 0 =>
          error "log of series with many leading zero coefficients"
      -- if 'posCheck?' is true, we do not allow logs of negative numbers
      if posCheck? then
        if ((signum := sign(coef)$SIGNEF) case I) then
          (signum :: I) = -1 =>
            return stateSeriesProblem("log","negative leading coefficient")
      lt := monomial(coef,deg)$UPXS
      -- check to see if lowest order coefficient is a negative rational
      negRat? : Boolean :=
        ((rat := ratIfCan coef) case RN) =>
          (rat :: RN) < 0 => true
          false
        false
      logTerm : FE :=
        mon : FE := (x :: FE) - (cen :: FE)
        pow : FE := mon ** (deg :: FE)
        negRat? => log(coef * pow)
        term1 : FE := (deg :: FE) * log(mon)
        log(coef) + term1
      [monomial(logTerm,0)$UPXS + log(ups/lt)]

    logToXXP(arg,posCheck?) ==
      (result := iExprToXXP(arg,posCheck?)) case %problem => result
      xxp := result.%expansion
      num := numer xxp; den := denom xxp
      not zero?(reductum num) or not zero?(reductum den) =>
        stateProblem("log","several monomials in numerator or denominator")
      numCoefLog : UPXS :=
        (res := genLog(leadingCoefficient num,posCheck?)) case %problem =>
          return [res.%problem]
        res.%series
      denCoefLog : UPXS :=
        (res := genLog(leadingCoefficient den,posCheck?)) case %problem =>
          return [res.%problem]
        res.%series
      numLog := (exponent degree num) + numCoefLog
      denLog := (exponent degree den) + denCoefLog  --?? num?
      [(numLog - denLog) :: XXP]

--% other transcendental functions

    applyIfCan(fcn,arg,fcnName,posCheck?) ==
      -- converts fcn(arg) to an exponential expansion
      (xxpArg := iExprToXXP(arg,posCheck?)) case %problem => xxpArg
      xxp := xxpArg.%expansion
      (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" =>
        stateProblem(fcnName,"multiply nested exponential")
      upxs := f :: UPXS
      (deg := order(upxs,1)) < 0 =>
        stateProblem(fcnName,"essential singularity")
      deg > 0 => [fcn(upxs) :: UPXS :: XXP]
      lc := coefficient(upxs,0); xOpList := opsInvolvingX lc
      null xOpList => [fcn(upxs) :: UPXS :: XXP]
      opInOpList?("log" :: SY,xOpList) =>
        stateProblem(fcnName,"logs in constant coefficient")
      contOnReals? fcnName => [fcn(upxs) :: UPXS :: XXP]
      stateProblem(fcnName,"x in constant coefficient")

    applyBddIfCan(fe,fcn,arg,fcnName,posCheck?) ==
      -- converts fcn(arg) to a generalized power series, where the
      -- function fcn is bounded for real values
      -- if fcn(arg) has an essential singularity as a complex
      -- function, we return fcn(arg) as a monomial of degree 0
      (xxpArg := iExprToXXP(arg,posCheck?)) case %problem =>
        trouble := xxpArg.%problem
        trouble.prob = "essential singularity" => [monomial(fe,0)$UPXS :: XXP]
        xxpArg
      xxp := xxpArg.%expansion
      (f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" =>
        stateProblem("exp","multiply nested exponential")
      (ans := fcn(f :: UPXS)) case "failed" => [monomial(fe,0)$UPXS :: XXP]
      [ans :: UPXS :: XXP]

    CONTFCNS : L S := ["sin","cos","atan","acot","exp","asinh"]
    -- functions which are defined and continuous at all real numbers

    BDDFCNS : L S := ["sin","cos","atan","acot"]
    -- functions which are bounded on the reals

    contOnReals? fcn == member?(fcn,CONTFCNS)

    bddOnReals? fcn  == member?(fcn,BDDFCNS)

    opsInvolvingX fcn ==
      opList := [op for k in tower fcn | unary?(op := operator k) _
                 and member?(x,variables first argument k)]
      removeDuplicates opList

    opInOpList?(name,opList) ==
      for op in opList repeat
        is?(op,name) => return true
      false

    exponential? fcn ==
      -- is 'fcn' of the form exp(f)?
      (ker := retractIfCan(fcn)@Union(K,"failed")) case K =>
        is?(ker :: K,"exp" :: Symbol)
      false

    productOfNonZeroes? fcn ==
      -- is 'fcn' a product of non-zero terms, where 'non-zero'
      -- means an exponential or a function not involving x
      exponential? fcn => true
      (prod := isTimes fcn) case "failed" => false
      for term in (prod :: L(FE)) repeat
        (not exponential? term) and member?(x,variables term) =>
          return false
      true

    tranToXXP(ker,arg,posCheck?) ==
      -- converts op(arg) to a power series for certain functions
      -- op in trig or hyperbolic trig categories
      -- N.B. when this function is called, 'k2elem' will have been
      -- applied, so the following functions cannot appear:
      -- tan, cot, sec, csc, sinh, cosh, tanh, coth, sech, csch
      -- acosh, atanh, acoth, asech, acsch
      is?(ker,"sin" :: SY) =>
        applyBddIfCan(ker :: FE,sinIfCan,arg,"sin",posCheck?)
      is?(ker,"cos" :: SY) =>
        applyBddIfCan(ker :: FE,cosIfCan,arg,"cos",posCheck?)
      is?(ker,"asin" :: SY) =>
        applyIfCan(asinIfCan,arg,"asin",posCheck?)
      is?(ker,"acos" :: SY) =>
        applyIfCan(acosIfCan,arg,"acos",posCheck?)
      is?(ker,"atan" :: SY) =>
        atancotToXXP(ker :: FE,arg,posCheck?,1)
      is?(ker,"acot" :: SY) =>
        atancotToXXP(ker :: FE,arg,posCheck?,-1)
      is?(ker,"asec" :: SY) =>
        applyIfCan(asecIfCan,arg,"asec",posCheck?)
      is?(ker,"acsc" :: SY) =>
        applyIfCan(acscIfCan,arg,"acsc",posCheck?)
      is?(ker,"asinh" :: SY) =>
        applyIfCan(asinhIfCan,arg,"asinh",posCheck?)
      stateProblem(string name ker,"unknown kernel")

    if FE has abs: FE -> FE then

      localAbs fcn == abs fcn

    else

      localAbs fcn == sqrt(fcn * fcn)

    signOfExpression: FE -> FE
    signOfExpression arg == localAbs(arg)/arg

    atancotToXXP(fe,arg,posCheck?,plusMinus) ==
      -- converts atan(f(x)) to a generalized power series
      atanFlag : String := "real: right side"; posCheck? : Boolean := true
      (result := exprToGenUPS(arg,posCheck?,atanFlag)$FS2UPS) case %problem =>
        trouble := result.%problem
        trouble.prob = "essential singularity" => [monomial(fe,0)$UPXS :: XXP]
        [result.%problem]
      ups := result.%series; coef := coefficient(ups,0)
      -- series involves complex numbers
      (ord := order(ups,0)) = 0 and coef * coef = -1 =>
        y := differentiate(ups)/(1 + ups*ups)
        yCoef := coefficient(y,-1)
        [(monomial(log yCoef,0)+integrate(y - monomial(yCoef,-1)$UPXS)) :: XXP]
      cc : FE :=
        ord < 0 =>
          (rn := ratIfCan(ord :: FE)) case "failed" =>
            -- this condition usually won't occur because exponents will
            -- be integers or rational numbers
            return stateProblem("atan","branch problem")
          lc := coefficient(ups,ord)
          (signum := sign(lc)$SIGNEF) case "failed" =>
            -- can't determine sign
            posNegPi2 := signOfExpression(lc) * pi()/(2 :: FE)
            plusMinus = 1 => posNegPi2
            pi()/(2 :: FE) - posNegPi2
          (n := signum :: Integer) = -1 =>
            plusMinus = 1 => -pi()/(2 :: FE)
            pi()
          plusMinus = 1 => pi()/(2 :: FE)
          0
        atan coef
      [((cc :: UPXS) + integrate(differentiate(ups)/(1 + ups*ups))) :: XXP]