/usr/share/axiom-20170501/src/algebra/FS2UPS.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 | )abbrev package FS2UPS FunctionSpaceToUnivariatePowerSeries
++ Author: Clifton J. Williamson
++ Date Created: 21 March 1989
++ Date Last Updated: 2 December 1994
++ Description:
++ This package converts expressions in some function space to power
++ series in a variable x with coefficients in that function space.
++ The function \spadfun{exprToUPS} converts expressions to power series
++ whose coefficients do not contain the variable x. The function
++ \spadfun{exprToGenUPS} converts functional expressions to power series
++ whose coefficients may involve functions of \spad{log(x)}.
FunctionSpaceToUnivariatePowerSeries(R,FE,Expon,UPS,TRAN,x) : SIG == CODE where
R : Join(GcdDomain,OrderedSet,RetractableTo Integer,
LinearlyExplicitRingOver Integer)
FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_
FunctionSpace R) with
coerce: Expon -> %
++ coerce(e) converts an 'exponent' e to an 'expression'
Expon : OrderedRing
UPS : Join(UnivariatePowerSeriesCategory(FE,Expon),Field,_
TranscendentalFunctionCategory) with
differentiate: % -> %
++ differentiate(x) returns the derivative of x since we
++ need to be able to differentiate a power series
integrate: % -> %
++ integrate(x) returns the integral of x since
++ we need to be able to integrate a power series
TRAN : PartialTranscendentalFunctions UPS
x : Symbol
B ==> Boolean
BOP ==> BasicOperator
I ==> Integer
NNI ==> NonNegativeInteger
K ==> Kernel FE
L ==> List
RN ==> Fraction Integer
S ==> String
SY ==> Symbol
PCL ==> PolynomialCategoryLifting(IndexedExponents K,K,R,SMP,FE)
POL ==> Polynomial R
SMP ==> SparseMultivariatePolynomial(R,K)
SUP ==> SparseUnivariatePolynomial Polynomial R
Problem ==> Record(func:String,prob:String)
Result ==> Union(%series:UPS,%problem:Problem)
SIGNEF ==> ElementaryFunctionSign(R,FE)
SIG ==> with
exprToUPS : (FE,B,S) -> Result
++ exprToUPS(fcn,posCheck?,atanFlag) converts the expression
++ \spad{fcn} to a power series. If \spad{posCheck?} is true,
++ log's of negative numbers are not allowed nor are nth roots of
++ negative numbers with n even. If \spad{posCheck?} is false,
++ these are allowed. \spad{atanFlag} determines how the case
++ \spad{atan(f(x))}, where \spad{f(x)} has a pole, will be treated.
++ The possible values of \spad{atanFlag} are \spad{"complex"},
++ \spad{"real: two sides"}, \spad{"real: left side"},
++ \spad{"real: right side"}, and \spad{"just do it"}.
++ If \spad{atanFlag} is \spad{"complex"}, then no series expansion
++ will be computed because, viewed as a function of a complex
++ variable, \spad{atan(f(x))} has an essential singularity.
++ Otherwise, the sign of the leading coefficient of the series
++ expansion of \spad{f(x)} determines the constant coefficient
++ in the series expansion of \spad{atan(f(x))}. If this sign cannot
++ be determined, a series expansion is computed only when
++ \spad{atanFlag} is \spad{"just do it"}. When the leading term
++ in the series expansion of \spad{f(x)} is of odd degree (or is a
++ rational degree with odd numerator), then the constant coefficient
++ in the series expansion of \spad{atan(f(x))} for values to the
++ left differs from that for values to the right. If \spad{atanFlag}
++ is \spad{"real: two sides"}, no series expansion will be computed.
++ If \spad{atanFlag} is \spad{"real: left side"} the constant
++ coefficient for values to the left will be used and if \spad{atanFlag}
++ \spad{"real: right side"} the constant coefficient for values to the
++ right will be used.
++ If there is a problem in converting the function to a power series,
++ a record containing the name of the function that caused the problem
++ and a brief description of the problem is returned.
++ When expanding the expression into a series it is assumed that
++ the series is centered at 0. For a series centered at a, the
++ user should perform the substitution \spad{x -> x + a} before calling
++ this function.
exprToGenUPS : (FE,B,S) -> Result
++ exprToGenUPS(fcn,posCheck?,atanFlag) converts the expression
++ \spad{fcn} to a generalized power series. If \spad{posCheck?}
++ is true, log's of negative numbers are not allowed nor are nth roots
++ of negative numbers with n even. If \spad{posCheck?} is false,
++ these are allowed. \spad{atanFlag} determines how the case
++ \spad{atan(f(x))}, where \spad{f(x)} has a pole, will be treated.
++ The possible values of \spad{atanFlag} are \spad{"complex"},
++ \spad{"real: two sides"}, \spad{"real: left side"},
++ \spad{"real: right side"}, and \spad{"just do it"}.
++ If \spad{atanFlag} is \spad{"complex"}, then no series expansion
++ will be computed because, viewed as a function of a complex
++ variable, \spad{atan(f(x))} has an essential singularity.
++ Otherwise, the sign of the leading coefficient of the series
++ expansion of \spad{f(x)} determines the constant coefficient
++ in the series expansion of \spad{atan(f(x))}. If this sign cannot
++ be determined, a series expansion is computed only when
++ \spad{atanFlag} is \spad{"just do it"}. When the leading term
++ in the series expansion of \spad{f(x)} is of odd degree (or is a
++ rational degree with odd numerator), then the constant coefficient
++ in the series expansion of \spad{atan(f(x))} for values to the
++ left differs from that for values to the right. If \spad{atanFlag}
++ is \spad{"real: two sides"}, no series expansion will be computed.
++ If \spad{atanFlag} is \spad{"real: left side"} the constant
++ coefficient for values to the left will be used and if \spad{atanFlag}
++ \spad{"real: right side"} the constant coefficient for values to the
++ right will be used.
++ If there is a problem in converting the function to a power
++ series, we return a record containing the name of the function
++ that caused the problem and a brief description of the problem.
++ When expanding the expression into a series it is assumed that
++ the series is centered at 0. For a series centered at a, the
++ user should perform the substitution \spad{x -> x + a} before calling
++ this function.
localAbs : FE -> FE
++ localAbs(fcn) = \spad{abs(fcn)} or \spad{sqrt(fcn**2)} depending
++ on whether or not FE has a function \spad{abs}. This should be
++ a local function, but the compiler won't allow it.
CODE ==> add
ratIfCan : FE -> Union(RN,"failed")
carefulNthRootIfCan : (UPS,NNI,B,B) -> Result
stateProblem : (S,S) -> Result
polyToUPS : SUP -> UPS
listToUPS : (L FE,(FE,B,S) -> Result,B,S,UPS,(UPS,UPS) -> UPS)_
-> Result
isNonTrivPower : FE -> Union(Record(val:FE,exponent:I),"failed")
powerToUPS : (FE,I,B,S) -> Result
kernelToUPS : (K,B,S) -> Result
nthRootToUPS : (FE,NNI,B,S) -> Result
logToUPS : (FE,B,S) -> Result
atancotToUPS : (FE,B,S,I) -> Result
applyIfCan : (UPS -> Union(UPS,"failed"),FE,S,B,S) -> Result
tranToUPS : (K,FE,B,S) -> Result
powToUPS : (L FE,B,S) -> Result
newElem : FE -> FE
smpElem : SMP -> FE
k2Elem : K -> FE
contOnReals? : S -> B
bddOnReals? : S -> B
iExprToGenUPS : (FE,B,S) -> Result
opsInvolvingX : FE -> L BOP
opInOpList? : (SY,L BOP) -> B
exponential? : FE -> B
productOfNonZeroes? : FE -> B
powerToGenUPS : (FE,I,B,S) -> Result
kernelToGenUPS : (K,B,S) -> Result
nthRootToGenUPS : (FE,NNI,B,S) -> Result
logToGenUPS : (FE,B,S) -> Result
expToGenUPS : (FE,B,S) -> Result
expGenUPS : (UPS,B,S) -> Result
atancotToGenUPS : (FE,FE,B,S,I) -> Result
genUPSApplyIfCan : (UPS -> Union(UPS,"failed"),FE,S,B,S) -> Result
applyBddIfCan : (FE,UPS -> Union(UPS,"failed"),FE,S,B,S) -> Result
tranToGenUPS : (K,FE,B,S) -> Result
powToGenUPS : (L FE,B,S) -> Result
ZEROCOUNT : I := 1000
-- number of zeroes to be removed when taking logs or nth roots
ratIfCan fcn == retractIfCan(fcn)@Union(RN,"failed")
carefulNthRootIfCan(ups,n,posCheck?,rightOnly?) ==
-- similar to 'nthRootIfCan', but it is fussy about the series
-- it takes as an argument. If 'n' is EVEN and 'posCheck?'
-- is truem then the leading coefficient of the series must
-- be POSITIVE. In this case, if 'rightOnly?' is false, the
-- order of the series must be zero. The idea is that the
-- series represents a real function of a real variable, and
-- we want a unique real nth root defined on a neighborhood
-- of zero.
n < 1 => error "nthRoot: n must be positive"
deg := degree ups
if (coef := coefficient(ups,deg)) = 0 then
deg := order(ups,deg + ZEROCOUNT :: Expon)
(coef := coefficient(ups,deg)) = 0 =>
error "log of series with many leading zero coefficients"
-- if 'posCheck?' is true, we do not allow nth roots of negative
-- numbers when n in even
if even?(n :: I) then
if posCheck? and ((signum := sign(coef)$SIGNEF) case I) then
(signum :: I) = -1 =>
return stateProblem("nth root","negative leading coefficient")
not rightOnly? and not zero? deg => -- nth root not unique
return stateProblem("nth root","series of non-zero order")
(ans := nthRootIfCan(ups,n)) case "failed" =>
stateProblem("nth root","no nth root")
[ans :: UPS]
stateProblem(function,problem) ==
-- records the problem which occured in converting an expression
-- to a power series
[[function,problem]]
exprToUPS(fcn,posCheck?,atanFlag) ==
-- converts a functional expression to a power series
--!! The following line is commented out so that expressions of
--!! the form a**b will be normalized to exp(b * log(a)) even if
--!! 'a' and 'b' do not involve the limiting variable 'x'.
--!! - cjw 1 Dec 94
--not member?(x,variables fcn) => [monomial(fcn,0)]
(poly := retractIfCan(fcn)@Union(POL,"failed")) case POL =>
[polyToUPS univariate(poly :: POL,x)]
(sum := isPlus fcn) case L(FE) =>
listToUPS(sum :: L(FE),exprToUPS,posCheck?,atanFlag,0,
(y1,y2) +-> y1 + y2)
(prod := isTimes fcn) case L(FE) =>
listToUPS(prod :: L(FE),exprToUPS,posCheck?,atanFlag,1,
(y1,y2) +-> y1 * y2)
(expt := isNonTrivPower fcn) case Record(val:FE,exponent:I) =>
power := expt :: Record(val:FE,exponent:I)
powerToUPS(power.val,power.exponent,posCheck?,atanFlag)
(ker := retractIfCan(fcn)@Union(K,"failed")) case K =>
kernelToUPS(ker :: K,posCheck?,atanFlag)
error "exprToUPS: neither a sum, product, power, nor kernel"
polyToUPS poly ==
-- converts a polynomial to a power series
zero? poly => 0
-- we don't start with 'ans := 0' as this may lead to an
-- enormous number of leading zeroes in the power series
deg := degree poly
coef := leadingCoefficient(poly) :: FE
ans := monomial(coef,deg :: Expon)$UPS
poly := reductum poly
while not zero? poly repeat
deg := degree poly
coef := leadingCoefficient(poly) :: FE
ans := ans + monomial(coef,deg :: Expon)$UPS
poly := reductum poly
ans
listToUPS(list,feToUPS,posCheck?,atanFlag,ans,op) ==
-- converts each element of a list of expressions to a power
-- series and returns the sum of these series, when 'op' is +
-- and 'ans' is 0, or the product of these series, when 'op' is *
-- and 'ans' is 1
while not null list repeat
(term := feToUPS(first list,posCheck?,atanFlag)) case %problem =>
return term
ans := op(ans,term.%series)
list := rest list
[ans]
isNonTrivPower fcn ==
-- is the function a power with exponent other than 0 or 1?
(expt := isPower fcn) case "failed" => "failed"
power := expt :: Record(val:FE,exponent:I)
(power.exponent = 1) => "failed"
power
powerToUPS(fcn,n,posCheck?,atanFlag) ==
-- converts an integral power to a power series
(b := exprToUPS(fcn,posCheck?,atanFlag)) case %problem => b
n > 0 => [(b.%series) ** n]
-- check lowest order coefficient when n < 0
ups := b.%series; deg := degree ups
if (coef := coefficient(ups,deg)) = 0 then
deg := order(ups,deg + ZEROCOUNT :: Expon)
(coef := coefficient(ups,deg)) = 0 =>
error "inverse of series with many leading zero coefficients"
[ups ** n]
kernelToUPS(ker,posCheck?,atanFlag) ==
-- converts a kernel to a power series
(sym := symbolIfCan(ker)) case Symbol =>
(sym :: Symbol) = x => [monomial(1,1)]
[monomial(ker :: FE,0)]
empty?(args := argument ker) => [monomial(ker :: FE,0)]
not member?(x, variables(ker :: FE)) => [monomial(ker :: FE,0)]
empty? rest args =>
arg := first args
is?(ker,"abs" :: Symbol) =>
nthRootToUPS(arg*arg,2,posCheck?,atanFlag)
is?(ker,"%paren" :: Symbol) => exprToUPS(arg,posCheck?,atanFlag)
is?(ker,"log" :: Symbol) => logToUPS(arg,posCheck?,atanFlag)
is?(ker,"exp" :: Symbol) =>
applyIfCan(expIfCan,arg,"exp",posCheck?,atanFlag)
tranToUPS(ker,arg,posCheck?,atanFlag)
is?(ker,"%power" :: Symbol) => powToUPS(args,posCheck?,atanFlag)
is?(ker,"nthRoot" :: Symbol) =>
n := retract(second args)@I
nthRootToUPS(first args,n :: NNI,posCheck?,atanFlag)
stateProblem(string name ker,"unknown kernel")
nthRootToUPS(arg,n,posCheck?,atanFlag) ==
-- converts an nth root to a power series
-- this is not used in the limit package, so the series may
-- have non-zero order, in which case nth roots may not be unique
(result := exprToUPS(arg,posCheck?,atanFlag)) case %problem => result
ans := carefulNthRootIfCan(result.%series,n,posCheck?,false)
ans case %problem => ans
[ans.%series]
logToUPS(arg,posCheck?,atanFlag) ==
-- converts a logarithm log(f(x)) to a power series
-- f(x) must have order 0 and if 'posCheck?' is true,
-- then f(x) must have a non-negative leading coefficient
(result := exprToUPS(arg,posCheck?,atanFlag)) case %problem => result
ups := result.%series
not zero? order(ups,1) =>
stateProblem("log","series of non-zero order")
coef := coefficient(ups,0)
-- if 'posCheck?' is true, we do not allow logs of negative numbers
if posCheck? then
if ((signum := sign(coef)$SIGNEF) case I) then
(signum :: I) = -1 =>
return stateProblem("log","negative leading coefficient")
[logIfCan(ups) :: UPS]
if FE has abs: FE -> FE then
localAbs fcn == abs fcn
else
localAbs fcn == sqrt(fcn * fcn)
signOfExpression: FE -> FE
signOfExpression arg == localAbs(arg)/arg
atancotToUPS(arg,posCheck?,atanFlag,plusMinus) ==
-- converts atan(f(x)) to a power series
(result := exprToUPS(arg,posCheck?,atanFlag)) case %problem => result
ups := result.%series; coef := coefficient(ups,0)
(ord := order(ups,0)) = 0 and coef * coef = -1 =>
-- series involves complex numbers
return stateProblem("atan","logarithmic singularity")
cc : FE :=
ord < 0 =>
atanFlag = "complex" =>
return stateProblem("atan","essential singularity")
(rn := ratIfCan(ord :: FE)) case "failed" =>
-- this condition usually won't occur because exponents will
-- be integers or rational numbers
return stateProblem("atan","branch problem")
if (atanFlag = "real: two sides") and (odd? numer(rn :: RN)) then
-- expansions to the left and right of zero have different
-- constant coefficients
return stateProblem("atan","branch problem")
lc := coefficient(ups,ord)
(signum := sign(lc)$SIGNEF) case "failed" =>
-- can't determine sign
atanFlag = "just do it" =>
plusMinus = 1 => pi()/(2 :: FE)
0
posNegPi2 := signOfExpression(lc) * pi()/(2 :: FE)
plusMinus = 1 => posNegPi2
pi()/(2 :: FE) - posNegPi2
--return stateProblem("atan","branch problem")
left? : B := atanFlag = "real: left side"; n := signum :: Integer
(left? and n = 1) or (not left? and n = -1) =>
plusMinus = 1 => -pi()/(2 :: FE)
pi()
plusMinus = 1 => pi()/(2 :: FE)
0
atan coef
[(cc :: UPS) + integrate(plusMinus * differentiate(ups)/(1 + ups*ups))]
applyIfCan(fcn,arg,fcnName,posCheck?,atanFlag) ==
-- converts fcn(arg) to a power series
(ups := exprToUPS(arg,posCheck?,atanFlag)) case %problem => ups
ans := fcn(ups.%series)
ans case "failed" => stateProblem(fcnName,"essential singularity")
[ans :: UPS]
tranToUPS(ker,arg,posCheck?,atanFlag) ==
-- converts ker to a power series for certain functions
-- in trig or hyperbolic trig categories
is?(ker,"sin" :: SY) =>
applyIfCan(sinIfCan,arg,"sin",posCheck?,atanFlag)
is?(ker,"cos" :: SY) =>
applyIfCan(cosIfCan,arg,"cos",posCheck?,atanFlag)
is?(ker,"tan" :: SY) =>
applyIfCan(tanIfCan,arg,"tan",posCheck?,atanFlag)
is?(ker,"cot" :: SY) =>
applyIfCan(cotIfCan,arg,"cot",posCheck?,atanFlag)
is?(ker,"sec" :: SY) =>
applyIfCan(secIfCan,arg,"sec",posCheck?,atanFlag)
is?(ker,"csc" :: SY) =>
applyIfCan(cscIfCan,arg,"csc",posCheck?,atanFlag)
is?(ker,"asin" :: SY) =>
applyIfCan(asinIfCan,arg,"asin",posCheck?,atanFlag)
is?(ker,"acos" :: SY) =>
applyIfCan(acosIfCan,arg,"acos",posCheck?,atanFlag)
is?(ker,"atan" :: SY) => atancotToUPS(arg,posCheck?,atanFlag,1)
is?(ker,"acot" :: SY) => atancotToUPS(arg,posCheck?,atanFlag,-1)
is?(ker,"asec" :: SY) =>
applyIfCan(asecIfCan,arg,"asec",posCheck?,atanFlag)
is?(ker,"acsc" :: SY) =>
applyIfCan(acscIfCan,arg,"acsc",posCheck?,atanFlag)
is?(ker,"sinh" :: SY) =>
applyIfCan(sinhIfCan,arg,"sinh",posCheck?,atanFlag)
is?(ker,"cosh" :: SY) =>
applyIfCan(coshIfCan,arg,"cosh",posCheck?,atanFlag)
is?(ker,"tanh" :: SY) =>
applyIfCan(tanhIfCan,arg,"tanh",posCheck?,atanFlag)
is?(ker,"coth" :: SY) =>
applyIfCan(cothIfCan,arg,"coth",posCheck?,atanFlag)
is?(ker,"sech" :: SY) =>
applyIfCan(sechIfCan,arg,"sech",posCheck?,atanFlag)
is?(ker,"csch" :: SY) =>
applyIfCan(cschIfCan,arg,"csch",posCheck?,atanFlag)
is?(ker,"asinh" :: SY) =>
applyIfCan(asinhIfCan,arg,"asinh",posCheck?,atanFlag)
is?(ker,"acosh" :: SY) =>
applyIfCan(acoshIfCan,arg,"acosh",posCheck?,atanFlag)
is?(ker,"atanh" :: SY) =>
applyIfCan(atanhIfCan,arg,"atanh",posCheck?,atanFlag)
is?(ker,"acoth" :: SY) =>
applyIfCan(acothIfCan,arg,"acoth",posCheck?,atanFlag)
is?(ker,"asech" :: SY) =>
applyIfCan(asechIfCan,arg,"asech",posCheck?,atanFlag)
is?(ker,"acsch" :: SY) =>
applyIfCan(acschIfCan,arg,"acsch",posCheck?,atanFlag)
stateProblem(string name ker,"unknown kernel")
powToUPS(args,posCheck?,atanFlag) ==
-- converts a power f(x) ** g(x) to a power series
(logBase := logToUPS(first args,posCheck?,atanFlag)) case %problem =>
logBase
(expon := exprToUPS(second args,posCheck?,atanFlag)) case %problem =>
expon
ans := expIfCan((expon.%series) * (logBase.%series))
ans case "failed" => stateProblem("exp","essential singularity")
[ans :: UPS]
-- Generalized power series: power series in x, where log(x) and
-- bounded functions of x are allowed to appear in the coefficients
-- of the series. Used for evaluating REAL limits at x = 0.
newElem f ==
-- rewrites a functional expression; all trig functions are
-- expressed in terms of sin and cos; all hyperbolic trig
-- functions are expressed in terms of exp
smpElem(numer f) / smpElem(denom f)
smpElem p == map(k2Elem,(x1:R):FE +-> x1::FE,p)$PCL
k2Elem k ==
-- rewrites a kernel; all trig functions are
-- expressed in terms of sin and cos; all hyperbolic trig
-- functions are expressed in terms of exp
null(args := [newElem a for a in argument k]) => k::FE
iez := inv(ez := exp(z := first args))
sinz := sin z; cosz := cos z
is?(k,"tan" :: Symbol) => sinz / cosz
is?(k,"cot" :: Symbol) => cosz / sinz
is?(k,"sec" :: Symbol) => inv cosz
is?(k,"csc" :: Symbol) => inv sinz
is?(k,"sinh" :: Symbol) => (ez - iez) / (2 :: FE)
is?(k,"cosh" :: Symbol) => (ez + iez) / (2 :: FE)
is?(k,"tanh" :: Symbol) => (ez - iez) / (ez + iez)
is?(k,"coth" :: Symbol) => (ez + iez) / (ez - iez)
is?(k,"sech" :: Symbol) => 2 * inv(ez + iez)
is?(k,"csch" :: Symbol) => 2 * inv(ez - iez)
(operator k) args
CONTFCNS : L S := ["sin","cos","atan","acot","exp","asinh"]
-- functions which are defined and continuous at all real numbers
BDDFCNS : L S := ["sin","cos","atan","acot"]
-- functions which are bounded on the reals
contOnReals? fcn == member?(fcn,CONTFCNS)
bddOnReals? fcn == member?(fcn,BDDFCNS)
exprToGenUPS(fcn,posCheck?,atanFlag) ==
-- converts a functional expression to a generalized power
-- series; "generalized" means that log(x) and bounded functions
-- of x are allowed to appear in the coefficients of the series
iExprToGenUPS(newElem fcn,posCheck?,atanFlag)
iExprToGenUPS(fcn,posCheck?,atanFlag) ==
-- converts a functional expression to a generalized power
-- series without first normalizing the expression
--!! The following line is commented out so that expressions of
--!! the form a**b will be normalized to exp(b * log(a)) even if
--!! 'a' and 'b' do not involve the limiting variable 'x'.
--!! - cjw 1 Dec 94
--not member?(x,variables fcn) => [monomial(fcn,0)]
(poly := retractIfCan(fcn)@Union(POL,"failed")) case POL =>
[polyToUPS univariate(poly :: POL,x)]
(sum := isPlus fcn) case L(FE) =>
listToUPS(sum :: L(FE),iExprToGenUPS,posCheck?,atanFlag,0,
(y1,y2) +-> y1 + y2)
(prod := isTimes fcn) case L(FE) =>
listToUPS(prod :: L(FE),iExprToGenUPS,posCheck?,atanFlag,1,
(y1,y2) +-> y1 * y2)
(expt := isNonTrivPower fcn) case Record(val:FE,exponent:I) =>
power := expt :: Record(val:FE,exponent:I)
powerToGenUPS(power.val,power.exponent,posCheck?,atanFlag)
(ker := retractIfCan(fcn)@Union(K,"failed")) case K =>
kernelToGenUPS(ker :: K,posCheck?,atanFlag)
error "exprToGenUPS: neither a sum, product, power, nor kernel"
opsInvolvingX fcn ==
opList := [op for k in tower fcn | unary?(op := operator k) _
and member?(x,variables first argument k)]
removeDuplicates opList
opInOpList?(name,opList) ==
for op in opList repeat
is?(op,name) => return true
false
exponential? fcn ==
-- is 'fcn' of the form exp(f)?
(ker := retractIfCan(fcn)@Union(K,"failed")) case K =>
is?(ker :: K,"exp" :: Symbol)
false
productOfNonZeroes? fcn ==
-- is 'fcn' a product of non-zero terms, where 'non-zero'
-- means an exponential or a function not involving x
exponential? fcn => true
(prod := isTimes fcn) case "failed" => false
for term in (prod :: L(FE)) repeat
(not exponential? term) and member?(x,variables term) =>
return false
true
powerToGenUPS(fcn,n,posCheck?,atanFlag) ==
-- converts an integral power to a generalized power series
-- if n < 0 and the lowest order coefficient of the series
-- involves x, we are careful about inverting this coefficient
-- the coefficient is inverted only if
-- (a) the only function involving x is 'log', or
-- (b) the lowest order coefficient is a product of exponentials
-- and functions not involving x
(b := exprToGenUPS(fcn,posCheck?,atanFlag)) case %problem => b
n > 0 => [(b.%series) ** n]
-- check lowest order coefficient when n < 0
ups := b.%series; deg := degree ups
if (coef := coefficient(ups,deg)) = 0 then
deg := order(ups,deg + ZEROCOUNT :: Expon)
(coef := coefficient(ups,deg)) = 0 =>
error "inverse of series with many leading zero coefficients"
xOpList := opsInvolvingX coef
-- only function involving x is 'log'
(null xOpList) => [ups ** n]
(null rest xOpList and is?(first xOpList,"log" :: SY)) =>
[ups ** n]
-- lowest order coefficient is a product of exponentials and
-- functions not involving x
productOfNonZeroes? coef => [ups ** n]
stateProblem("inv","lowest order coefficient involves x")
kernelToGenUPS(ker,posCheck?,atanFlag) ==
-- converts a kernel to a generalized power series
(sym := symbolIfCan(ker)) case Symbol =>
(sym :: Symbol) = x => [monomial(1,1)]
[monomial(ker :: FE,0)]
empty?(args := argument ker) => [monomial(ker :: FE,0)]
empty? rest args =>
arg := first args
is?(ker,"abs" :: Symbol) =>
nthRootToGenUPS(arg*arg,2,posCheck?,atanFlag)
is?(ker,"%paren" :: Symbol) => iExprToGenUPS(arg,posCheck?,atanFlag)
is?(ker,"log" :: Symbol) => logToGenUPS(arg,posCheck?,atanFlag)
is?(ker,"exp" :: Symbol) => expToGenUPS(arg,posCheck?,atanFlag)
tranToGenUPS(ker,arg,posCheck?,atanFlag)
is?(ker,"%power" :: Symbol) => powToGenUPS(args,posCheck?,atanFlag)
is?(ker,"nthRoot" :: Symbol) =>
n := retract(second args)@I
nthRootToGenUPS(first args,n :: NNI,posCheck?,atanFlag)
stateProblem(string name ker,"unknown kernel")
nthRootToGenUPS(arg,n,posCheck?,atanFlag) ==
-- convert an nth root to a power series
-- used for computing right hand limits, so the series may have
-- non-zero order, but may not have a negative leading coefficient
-- when n is even
(result := iExprToGenUPS(arg,posCheck?,atanFlag)) case %problem =>
result
ans := carefulNthRootIfCan(result.%series,n,posCheck?,true)
ans case %problem => ans
[ans.%series]
logToGenUPS(arg,posCheck?,atanFlag) ==
-- converts a logarithm log(f(x)) to a generalized power series
(result := iExprToGenUPS(arg,posCheck?,atanFlag)) case %problem =>
result
ups := result.%series; deg := degree ups
if (coef := coefficient(ups,deg)) = 0 then
deg := order(ups,deg + ZEROCOUNT :: Expon)
(coef := coefficient(ups,deg)) = 0 =>
error "log of series with many leading zero coefficients"
-- if 'posCheck?' is true, we do not allow logs of negative numbers
if posCheck? then
if ((signum := sign(coef)$SIGNEF) case I) then
(signum :: I) = -1 =>
return stateProblem("log","negative leading coefficient")
-- create logarithmic term, avoiding log's of negative rationals
lt := monomial(coef,deg)$UPS; cen := center lt
-- check to see if lowest order coefficient is a negative rational
negRat? : Boolean :=
((rat := ratIfCan coef) case RN) =>
(rat :: RN) < 0 => true
false
false
logTerm : FE :=
mon : FE := (x :: FE) - (cen :: FE)
pow : FE := mon ** (deg :: FE)
negRat? => log(coef * pow)
term1 : FE := (deg :: FE) * log(mon)
log(coef) + term1
[monomial(logTerm,0) + log(ups/lt)]
expToGenUPS(arg,posCheck?,atanFlag) ==
-- converts an exponential exp(f(x)) to a generalized
-- power series
(ups := iExprToGenUPS(arg,posCheck?,atanFlag)) case %problem => ups
expGenUPS(ups.%series,posCheck?,atanFlag)
expGenUPS(ups,posCheck?,atanFlag) ==
-- computes the exponential of a generalized power series.
-- If the series has order zero and the constant term a0 of the
-- series involves x, the function tries to expand exp(a0) as
-- a power series.
(deg := order(ups,1)) < 0 =>
stateProblem("exp","essential singularity")
deg > 0 => [exp ups]
lc := coefficient(ups,0); xOpList := opsInvolvingX lc
not opInOpList?("log" :: SY,xOpList) => [exp ups]
-- try to fix exp(lc) if necessary
expCoef :=
normalize(exp lc,x)$ElementaryFunctionStructurePackage(R,FE)
opInOpList?("log" :: SY,opsInvolvingX expCoef) =>
stateProblem("exp","logs in constant coefficient")
result := exprToGenUPS(expCoef,posCheck?,atanFlag)
result case %problem => result
[(result.%series) * exp(ups - monomial(lc,0))]
atancotToGenUPS(fe,arg,posCheck?,atanFlag,plusMinus) ==
-- converts atan(f(x)) to a generalized power series
(result := exprToGenUPS(arg,posCheck?,atanFlag)) case %problem =>
trouble := result.%problem
trouble.prob = "essential singularity" => [monomial(fe,0)$UPS]
result
ups := result.%series; coef := coefficient(ups,0)
-- series involves complex numbers
(ord := order(ups,0)) = 0 and coef * coef = -1 =>
y := differentiate(ups)/(1 + ups*ups)
yCoef := coefficient(y,-1)
[monomial(log yCoef,0) + integrate(y - monomial(yCoef,-1)$UPS)]
cc : FE :=
ord < 0 =>
atanFlag = "complex" =>
return stateProblem("atan","essential singularity")
(rn := ratIfCan(ord :: FE)) case "failed" =>
-- this condition usually won't occur because exponents will
-- be integers or rational numbers
return stateProblem("atan","branch problem")
if (atanFlag = "real: two sides") and (odd? numer(rn :: RN)) then
-- expansions to the left and right of zero have different
-- constant coefficients
return stateProblem("atan","branch problem")
lc := coefficient(ups,ord)
(signum := sign(lc)$SIGNEF) case "failed" =>
-- can't determine sign
atanFlag = "just do it" =>
plusMinus = 1 => pi()/(2 :: FE)
0
posNegPi2 := signOfExpression(lc) * pi()/(2 :: FE)
plusMinus = 1 => posNegPi2
pi()/(2 :: FE) - posNegPi2
--return stateProblem("atan","branch problem")
left? : B := atanFlag = "real: left side"; n := signum :: Integer
(left? and n = 1) or (not left? and n = -1) =>
plusMinus = 1 => -pi()/(2 :: FE)
pi()
plusMinus = 1 => pi()/(2 :: FE)
0
atan coef
[(cc :: UPS) + integrate(differentiate(ups)/(1 + ups*ups))]
genUPSApplyIfCan(fcn,arg,fcnName,posCheck?,atanFlag) ==
-- converts fcn(arg) to a generalized power series
(series := iExprToGenUPS(arg,posCheck?,atanFlag)) case %problem =>
series
ups := series.%series
(deg := order(ups,1)) < 0 =>
stateProblem(fcnName,"essential singularity")
deg > 0 => [fcn(ups) :: UPS]
lc := coefficient(ups,0); xOpList := opsInvolvingX lc
null xOpList => [fcn(ups) :: UPS]
opInOpList?("log" :: SY,xOpList) =>
stateProblem(fcnName,"logs in constant coefficient")
contOnReals? fcnName => [fcn(ups) :: UPS]
stateProblem(fcnName,"x in constant coefficient")
applyBddIfCan(fe,fcn,arg,fcnName,posCheck?,atanFlag) ==
-- converts fcn(arg) to a generalized power series, where the
-- function fcn is bounded for real values
-- if fcn(arg) has an essential singularity as a complex
-- function, we return fcn(arg) as a monomial of degree 0
(ups := iExprToGenUPS(arg,posCheck?,atanFlag)) case %problem =>
trouble := ups.%problem
trouble.prob = "essential singularity" => [monomial(fe,0)$UPS]
ups
(ans := fcn(ups.%series)) case "failed" => [monomial(fe,0)$UPS]
[ans :: UPS]
tranToGenUPS(ker,arg,posCheck?,atanFlag) ==
-- converts op(arg) to a power series for certain functions
-- op in trig or hyperbolic trig categories
-- N.B. when this function is called, 'k2elem' will have been
-- applied, so the following functions cannot appear:
-- tan, cot, sec, csc, sinh, cosh, tanh, coth, sech, csch
is?(ker,"sin" :: SY) =>
applyBddIfCan(ker :: FE,sinIfCan,arg,"sin",posCheck?,atanFlag)
is?(ker,"cos" :: SY) =>
applyBddIfCan(ker :: FE,cosIfCan,arg,"cos",posCheck?,atanFlag)
is?(ker,"asin" :: SY) =>
genUPSApplyIfCan(asinIfCan,arg,"asin",posCheck?,atanFlag)
is?(ker,"acos" :: SY) =>
genUPSApplyIfCan(acosIfCan,arg,"acos",posCheck?,atanFlag)
is?(ker,"atan" :: SY) =>
atancotToGenUPS(ker :: FE,arg,posCheck?,atanFlag,1)
is?(ker,"acot" :: SY) =>
atancotToGenUPS(ker :: FE,arg,posCheck?,atanFlag,-1)
is?(ker,"asec" :: SY) =>
genUPSApplyIfCan(asecIfCan,arg,"asec",posCheck?,atanFlag)
is?(ker,"acsc" :: SY) =>
genUPSApplyIfCan(acscIfCan,arg,"acsc",posCheck?,atanFlag)
is?(ker,"asinh" :: SY) =>
genUPSApplyIfCan(asinhIfCan,arg,"asinh",posCheck?,atanFlag)
is?(ker,"acosh" :: SY) =>
genUPSApplyIfCan(acoshIfCan,arg,"acosh",posCheck?,atanFlag)
is?(ker,"atanh" :: SY) =>
genUPSApplyIfCan(atanhIfCan,arg,"atanh",posCheck?,atanFlag)
is?(ker,"acoth" :: SY) =>
genUPSApplyIfCan(acothIfCan,arg,"acoth",posCheck?,atanFlag)
is?(ker,"asech" :: SY) =>
genUPSApplyIfCan(asechIfCan,arg,"asech",posCheck?,atanFlag)
is?(ker,"acsch" :: SY) =>
genUPSApplyIfCan(acschIfCan,arg,"acsch",posCheck?,atanFlag)
stateProblem(string name ker,"unknown kernel")
powToGenUPS(args,posCheck?,atanFlag) ==
-- converts a power f(x) ** g(x) to a generalized power series
(logBase := logToGenUPS(first args,posCheck?,atanFlag)) case %problem =>
logBase
expon := iExprToGenUPS(second args,posCheck?,atanFlag)
expon case %problem => expon
expGenUPS((expon.%series) * (logBase.%series),posCheck?,atanFlag)
|