This file is indexed.

/usr/share/axiom-20170501/src/algebra/FSPECF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
)abbrev package FSPECF FunctionalSpecialFunction
++ Author: Manuel Bronstein
++ Date Created: 18 Apr 1989
++ Date Last Updated: 4 October 1993
++ Description: 
++ Provides some special functions over an integral domain.

FunctionalSpecialFunction(R, F) : SIG == CODE where
  R : Join(OrderedSet, IntegralDomain)
  F : FunctionSpace R

  OP  ==> BasicOperator
  K   ==> Kernel F
  SE  ==> Symbol
  SPECIALDIFF  ==> "%specialDiff"

  SIG ==> with

    belong? : OP -> Boolean
      ++ belong?(op) is true if op is a special function operator;

    operator : OP -> OP
      ++ operator(op) returns a copy of op with the domain-dependent
      ++ properties appropriate for F;
      ++ error if op is not a special function operator

    abs : F -> F
      ++ abs(f) returns the absolute value operator applied to f

    Gamma : F -> F
      ++ Gamma(f) returns the formal Gamma function applied to f

    Gamma : (F,F) -> F
      ++ Gamma(a,x) returns the incomplete Gamma function applied to a and x

    Beta : (F,F) -> F
      ++ Beta(x,y) returns the beta function applied to x and y

    digamma : F->F
      ++ digamma(x) returns the digamma function applied to x 

    polygamma : (F,F) ->F
      ++ polygamma(x,y) returns the polygamma function applied to x and y

    besselJ : (F,F) -> F
      ++ besselJ(x,y) returns the besselj function applied to x and y

    besselY : (F,F) -> F
      ++ besselY(x,y) returns the bessely function applied to x and y

    besselI : (F,F) -> F
      ++ besselI(x,y) returns the besseli function applied to x and y

    besselK : (F,F) -> F
      ++ besselK(x,y) returns the besselk function applied to x and y

    airyAi : F -> F
      ++ airyAi(x) returns the airyai function applied to x 

    airyBi : F -> F
      ++ airyBi(x) returns the airybi function applied to x

    iiGamma : F -> F
      ++ iiGamma(x) should be local but conditional;
    iiabs     : F -> F
      ++ iiabs(x) should be local but conditional;
    iiBeta     : List F -> F
      ++ iiBeta(x) should be local but conditional;
    iidigamma  : F -> F
      ++ iidigamma(x) should be local but conditional;
    iipolygamma: List F -> F
      ++ iipolygamma(x) should be local but conditional;
    iiBesselJ  : List F -> F
      ++ iiBesselJ(x) should be local but conditional;
    iiBesselY  : List F -> F
      ++ iiBesselY(x) should be local but conditional;
    iiBesselI  : List F -> F
      ++ iiBesselI(x) should be local but conditional;
    iiBesselK  : List F -> F
      ++ iiBesselK(x) should be local but conditional;
    iiAiryAi   : F -> F
      ++ iiAiryAi(x) should be local but conditional;
    iiAiryBi   : F -> F
      ++ iiAiryBi(x) should be local but conditional;

  CODE ==> add

    iabs      : F -> F
    iGamma    : F -> F
    iBeta     : (F, F) -> F
    idigamma  : F -> F
    iiipolygamma: (F, F) -> F
    iiiBesselJ  : (F, F) -> F
    iiiBesselY  : (F, F) -> F
    iiiBesselI  : (F, F) -> F
    iiiBesselK  : (F, F) -> F
    iAiryAi   : F -> F
    iAiryBi   : F -> F

    opabs       := operator("abs"::Symbol)$CommonOperators
    opGamma     := operator("Gamma"::Symbol)$CommonOperators
    opGamma2    := operator("Gamma2"::Symbol)$CommonOperators
    opBeta      := operator("Beta"::Symbol)$CommonOperators
    opdigamma   := operator("digamma"::Symbol)$CommonOperators
    oppolygamma := operator("polygamma"::Symbol)$CommonOperators
    opBesselJ   := operator("besselJ"::Symbol)$CommonOperators
    opBesselY   := operator("besselY"::Symbol)$CommonOperators
    opBesselI   := operator("besselI"::Symbol)$CommonOperators
    opBesselK   := operator("besselK"::Symbol)$CommonOperators
    opAiryAi    := operator("airyAi"::Symbol)$CommonOperators
    opAiryBi    := operator("airyBi"::Symbol)$CommonOperators

    abs x         == opabs x

    Gamma(x)      == opGamma(x)

    Gamma(a,x)    == opGamma2(a,x)

    Beta(x,y)     == opBeta(x,y)

    digamma x     == opdigamma(x)

    polygamma(k,x)== oppolygamma(k,x)

    besselJ(a,x)  == opBesselJ(a,x)

    besselY(a,x)  == opBesselY(a,x)

    besselI(a,x)  == opBesselI(a,x)

    besselK(a,x)  == opBesselK(a,x)

    airyAi(x)     == opAiryAi(x)

    airyBi(x)     == opAiryBi(x)

    belong? op == has?(op, "special")

    operator op ==
      is?(op, "abs"::Symbol)      => opabs
      is?(op, "Gamma"::Symbol)    => opGamma
      is?(op, "Gamma2"::Symbol)   => opGamma2
      is?(op, "Beta"::Symbol)     => opBeta
      is?(op, "digamma"::Symbol)  => opdigamma
      is?(op, "polygamma"::Symbol)=> oppolygamma
      is?(op, "besselJ"::Symbol)  => opBesselJ
      is?(op, "besselY"::Symbol)  => opBesselY
      is?(op, "besselI"::Symbol)  => opBesselI
      is?(op, "besselK"::Symbol)  => opBesselK
      is?(op, "airyAi"::Symbol)   => opAiryAi
      is?(op, "airyBi"::Symbol)   => opAiryBi

      error "Not a special operator"

    -- Could put more unconditional special rules for other functions here
    iGamma x ==
      (x = 1) => x
      kernel(opGamma, x)

    iabs x ==
      zero? x => 0
      is?(x, opabs) => x
      x < 0 => kernel(opabs, -x)
      kernel(opabs, x)

    iBeta(x, y) == kernel(opBeta, [x, y])
    idigamma x == kernel(opdigamma, x)
    iiipolygamma(n, x) == kernel(oppolygamma, [n, x])
    iiiBesselJ(x, y) == kernel(opBesselJ, [x, y])
    iiiBesselY(x, y) == kernel(opBesselY, [x, y])
    iiiBesselI(x, y) == kernel(opBesselI, [x, y])
    iiiBesselK(x, y) == kernel(opBesselK, [x, y])
    iAiryAi x == kernel(opAiryAi, x)
    iAiryBi x == kernel(opAiryBi, x)


    -- Could put more conditional special rules for other functions here

    if R has abs : R -> R then

      iiabs x ==
        (r := retractIfCan(x)@Union(Fraction Polynomial R, "failed"))
          case "failed" => iabs x
        f := r::Fraction Polynomial R
        (a := retractIfCan(numer f)@Union(R, "failed")) case "failed" or
          (b:= retractIfCan(denom f)@Union(R,"failed")) case "failed" => iabs x
        abs(a::R)::F / abs(b::R)::F

    else 

      iiabs x == iabs x

    if R has SpecialFunctionCategory then

      iiGamma x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iGamma x
        Gamma(r::R)::F

      iiBeta l ==
        (r:=retractIfCan(first l)@Union(R,"failed")) case "failed" or _
        (s:=retractIfCan(second l)@Union(R,"failed")) case "failed" _
            => iBeta(first l, second l)
        Beta(r::R, s::R)::F

      iidigamma x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => idigamma x
        digamma(r::R)::F

      iipolygamma l ==
        (s:=retractIfCan(first l)@Union(R,"failed")) case "failed" or _
        (r:=retractIfCan(second l)@Union(R,"failed")) case "failed" _
            => iiipolygamma(first l, second l)
        polygamma(s::R, r::R)::F

      iiBesselJ l ==
        (r:=retractIfCan(first l)@Union(R,"failed")) case "failed" or _
        (s:=retractIfCan(second l)@Union(R,"failed")) case "failed" _
            => iiiBesselJ(first l, second l)
        besselJ(r::R, s::R)::F

      iiBesselY l ==
        (r:=retractIfCan(first l)@Union(R,"failed")) case "failed" or _
        (s:=retractIfCan(second l)@Union(R,"failed")) case "failed" _
            => iiiBesselY(first l, second l)
        besselY(r::R, s::R)::F

      iiBesselI l ==
        (r:=retractIfCan(first l)@Union(R,"failed")) case "failed" or _
        (s:=retractIfCan(second l)@Union(R,"failed")) case "failed" _
            => iiiBesselI(first l, second l)
        besselI(r::R, s::R)::F

      iiBesselK l ==
        (r:=retractIfCan(first l)@Union(R,"failed")) case "failed" or _
        (s:=retractIfCan(second l)@Union(R,"failed")) case "failed" _
            => iiiBesselK(first l, second l)
        besselK(r::R, s::R)::F

      iiAiryAi x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryAi x
        airyAi(r::R)::F

      iiAiryBi x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryBi x
        airyBi(r::R)::F

    else
      if R has RetractableTo Integer then

        iiGamma x ==
          (r := retractIfCan(x)@Union(Integer, "failed")) case Integer
            and (r::Integer >= 1) => factorial(r::Integer - 1)::F
          iGamma x

      else

        iiGamma x == iGamma x

      iiBeta l == iBeta(first l, second l)

      iidigamma x == idigamma x 

      iipolygamma l == iiipolygamma(first l, second l)

      iiBesselJ l == iiiBesselJ(first l, second l) 

      iiBesselY l == iiiBesselY(first l, second l)

      iiBesselI l == iiiBesselI(first l, second l)

      iiBesselK l == iiiBesselK(first l, second l)

      iiAiryAi x == iAiryAi x

      iiAiryBi x == iAiryBi x

    -- Default behaviour is to build a kernel

    evaluate(opGamma, iiGamma)$BasicOperatorFunctions1(F)

    evaluate(opabs, iiabs)$BasicOperatorFunctions1(F)

    evaluate(opBeta      ,iiBeta     )$BasicOperatorFunctions1(F)

    evaluate(opdigamma   ,iidigamma  )$BasicOperatorFunctions1(F)

    evaluate(oppolygamma ,iipolygamma)$BasicOperatorFunctions1(F)

    evaluate(opBesselJ   ,iiBesselJ  )$BasicOperatorFunctions1(F)

    evaluate(opBesselY   ,iiBesselY  )$BasicOperatorFunctions1(F)

    evaluate(opBesselI   ,iiBesselI  )$BasicOperatorFunctions1(F)

    evaluate(opBesselK   ,iiBesselK  )$BasicOperatorFunctions1(F)

    evaluate(opAiryAi    ,iiAiryAi   )$BasicOperatorFunctions1(F)

    evaluate(opAiryBi    ,iiAiryBi   )$BasicOperatorFunctions1(F)

    import Fraction Integer
    ahalf:  F    := recip(2::F)::F
    athird: F    := recip(2::F)::F
    twothirds: F := 2*recip(3::F)::F
    dummyArg: SE := new()$SE
    opdiff := operator first kernels D((operator(new()$SE)$BasicOperator)
                                            (dummyArg::F), dummyArg)
    dm := new()$SE :: F

    iBesselJ(l: List F, t: SE): F ==
        n := first l; x := second l
        differentiate(n, t)*kernel(opdiff, [opBesselJ [dm, x], dm, n])
          + differentiate(x, t) * ahalf * (besselJ (n-1,x) - besselJ (n+1,x))

    iBesselY(l: List F, t: SE): F ==
        n := first l; x := second l
        differentiate(n, t)*kernel(opdiff, [opBesselY [dm, x], dm, n])
          + differentiate(x, t) * ahalf * (besselY (n-1,x) - besselY (n+1,x))

    iBesselI(l: List F, t: SE): F ==
        n := first l; x := second l
        differentiate(n, t)*kernel(opdiff, [opBesselI [dm, x], dm, n])
          + differentiate(x, t)* ahalf * (besselI (n-1,x) + besselI (n+1,x))

    iBesselK(l: List F, t: SE): F ==
        n := first l; x := second l
        differentiate(n, t)*kernel(opdiff, [opBesselK [dm, x], dm, n])
          - differentiate(x, t)* ahalf * (besselK (n-1,x) + besselK (n+1,x))

    ipolygamma(l: List F, x: SE): F ==
        member?(x, variables first l) =>
            error "cannot differentiate polygamma with respect to the first argument"
        n := first l; y := second l
        differentiate(y, x)*polygamma(n+1, y)
    iBetaGrad1(l: List F): F ==
        x := first l; y := second l
        Beta(x,y)*(digamma x - digamma(x+y))
    iBetaGrad2(l: List F): F ==
        x := first l; y := second l
        Beta(x,y)*(digamma y - digamma(x+y))

    if F has ElementaryFunctionCategory then
      iGamma2(l: List F, t: SE): F ==
        a := first l; x := second l
        differentiate(a, t)*kernel(opdiff, [opGamma2 [dm, x], dm, a])
          - differentiate(x, t)* x ** (a - 1) * exp(-x)
      setProperty(opGamma2, SPECIALDIFF, iGamma2@((List F, SE)->F) 
                                                 pretend None)
    derivative(opabs,       (x:F):F +-> abs(x) * inv(x))
    derivative(opGamma,     (x:F):F +-> digamma x * Gamma x)
    derivative(opBeta,      [iBetaGrad1, iBetaGrad2])
    derivative(opdigamma,   (x:F):F +-> polygamma(1, x))
    setProperty(oppolygamma, SPECIALDIFF, ipolygamma@((List F, SE)->F)
                                                     pretend None)
    setProperty(opBesselJ, SPECIALDIFF, iBesselJ@((List F, SE)->F) 
                                                 pretend None)
    setProperty(opBesselY, SPECIALDIFF, iBesselY@((List F, SE)->F) 
                                                 pretend None)
    setProperty(opBesselI, SPECIALDIFF, iBesselI@((List F, SE)->F) 
                                                 pretend None)
    setProperty(opBesselK, SPECIALDIFF, iBesselK@((List F, SE)->F) 
                                                 pretend None)