This file is indexed.

/usr/share/axiom-20170501/src/algebra/GALFACT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
)abbrev package GALFACT GaloisGroupFactorizer
++ Author: Frederic Lehobey
++ Date Created: 28 June 1994
++ Date Last Updated: 11 July 1997
++ References:
++ [1] Bernard Beauzamy, Vilmar Trevisan and Paul S. Wang, Polynomial 
++ Factorization: Sharp Bounds, Efficient Algorithms,
++ J. Symbolic Computation (1993) 15, 393-413
++ [2] John Brillhart, Note on Irreducibility Testing,
++ Mathematics of Computation, vol. 35, num. 35, Oct. 1980, 1379-1381
++ [3] David R. Musser, On the Efficiency of a Polynomial Irreducibility Test,
++ Journal of the ACM, Vol. 25, No. 2, April 1978, pp. 271-282
++ Description:
++ \spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.
-- improvements to do :
--   + reformulate the lifting problem in completeFactor -- See [1] (hard)
--   + implement algorithm RC -- See [1] (easy)
--   + use Dedekind's criterion to prove sometimes irreducibility (easy)
--     or even to improve early detection of true factors (hard)
--   + replace Sets by Bits

GaloisGroupFactorizer(UP) : SIG == CODE where
  UP: UnivariatePolynomialCategory Integer

  Z ==> Integer
  N ==> NonNegativeInteger
  P ==> PositiveInteger
  CYC ==> CyclotomicPolynomialPackage()
  SUPZ ==> SparseUnivariatePolynomial Z
  ParFact ==> Record(irr: UP, pow: Z)
  FinalFact ==> Record(contp: Z, factors: List ParFact)
  DDRecord ==> Record(factor: UP, degree: Z) -- a Distinct-Degree factor
  DDList ==> List DDRecord
  MFact ==> Record(prime: Z,factors: List UP) -- Modular Factors
  LR ==> Record(left: UP, right: UP) -- Functional decomposition

  SIG ==> with

    makeFR : FinalFact -> Factored UP
      ++ makeFR(flist) turns the final factorization of henselFact into a
      ++ \spadtype{Factored} object.

    degreePartition : DDList -> Multiset N
      ++ degreePartition(ddfactorization) returns the degree partition of
      ++ the polynomial f modulo p where ddfactorization is the distinct
      ++ degree factorization of f computed by ddFact for some prime p.

    musserTrials : () -> P
      ++ musserTrials() returns the number of primes that are tried in
      ++ \spadfun{modularFactor}.

    musserTrials : P -> P
      ++ musserTrials(n) sets to n the number of primes to be tried in
      ++ \spadfun{modularFactor} and returns the previous value.

    stopMusserTrials : () -> P
      ++ stopMusserTrials() returns the bound on the number of factors for
      ++ which \spadfun{modularFactor} stops to look for an other prime. You
      ++ will have to remember that the step of recombining the extraneous
      ++ factors may take up to \spad{2**stopMusserTrials()} trials. 

    stopMusserTrials : P -> P
      ++ stopMusserTrials(n) sets to n the bound on the number of factors for
      ++ which \spadfun{modularFactor} stops to look for an other prime. You
      ++ will have to remember that the step of recombining the extraneous
      ++ factors may take up to \spad{2**n} trials. Returns the previous
      ++ value.

    numberOfFactors : DDList -> N
      ++ numberOfFactors(ddfactorization) returns the number of factors of 
      ++ the polynomial f modulo p where ddfactorization is the distinct
      ++ degree factorization of f computed by ddFact for some prime p.

    modularFactor : UP -> MFact
      ++ modularFactor(f) chooses a "good" prime and returns the factorization
      ++ of f modulo this prime in a form that may be used by
      ++ completeHensel. If prime is zero
      ++ it means that f has been proved to be irreducible over the integers
      ++ or that f is a unit (1 or -1).
      ++ f shall be primitive (content(p)=1) and square free 
      ++ (without repeated factors).

    useSingleFactorBound? : () -> Boolean
      ++ useSingleFactorBound?() returns \spad{true} if algorithm with single
      ++ factor bound is used for factorization, \spad{false} for algorithm
      ++ with overall bound.

    useSingleFactorBound : Boolean -> Boolean
      ++ useSingleFactorBound(b) chooses the algorithm to be used by the
      ++ factorizers: \spad{true} for algorithm with single
      ++ factor bound, \spad{false} for algorithm with overall bound.
      ++ Returns the previous value.

    useEisensteinCriterion? : () -> Boolean
      ++ useEisensteinCriterion?() returns \spad{true} if factorizers
      ++ check Eisenstein's criterion before factoring.

    useEisensteinCriterion : Boolean -> Boolean
      ++ useEisensteinCriterion(b) chooses whether factorizers check
      ++ Eisenstein's criterion before factoring: \spad{true} for
      ++ using it, \spad{false} else. Returns the previous value.

    eisensteinIrreducible? : UP -> Boolean
      ++ eisensteinIrreducible?(p) returns \spad{true} if p can be
      ++ shown to be irreducible by Eisenstein's criterion,
      ++ \spad{false} is inconclusive.

    tryFunctionalDecomposition? : () -> Boolean
      ++ tryFunctionalDecomposition?() returns \spad{true} if
      ++ factorizers try functional decomposition of polynomials before
      ++ factoring them.

    tryFunctionalDecomposition : Boolean -> Boolean
      ++ tryFunctionalDecomposition(b) chooses whether factorizers have
      ++ to look for functional decomposition of polynomials
      ++ (\spad{true}) or not (\spad{false}). Returns the previous value.

    factor : UP -> Factored UP
      ++ factor(p) returns the factorization of p over the integers.

    factor : (UP,N) -> Factored UP
      ++ factor(p,r) factorizes the polynomial p using the single factor bound
      ++ algorithm and knowing that p has at least r factors.

    factor : (UP,List N) -> Factored UP
      ++ factor(p,listOfDegrees) factorizes the polynomial p using the single
      ++ factor bound algorithm and knowing that p has for possible 
      ++ splitting of its degree listOfDegrees.

    factor : (UP,List N,N) -> Factored UP
      ++ factor(p,listOfDegrees,r) factorizes the polynomial p using the single
      ++ factor bound algorithm, knowing that p has for possible 
      ++ splitting of its degree listOfDegrees and that p has at least r
      ++ factors.

    factor : (UP,N,N) -> Factored UP
      ++ factor(p,d,r) factorizes the polynomial p using the single
      ++ factor bound algorithm, knowing that d divides the degree of all 
      ++ factors of p and that p has at least r factors.

    factorSquareFree : UP -> Factored UP
      ++ factorSquareFree(p) returns the factorization of p which is supposed
      ++ not having any repeated factor (this is not checked).

    factorSquareFree : (UP,N) -> Factored UP
      ++ factorSquareFree(p,r) factorizes the polynomial p using the single
      ++ factor bound algorithm and knowing that p has at least r factors.
      ++ f is supposed not having any repeated factor (this is not checked).

    factorSquareFree : (UP,List N) -> Factored UP
      ++ factorSquareFree(p,listOfDegrees) factorizes the polynomial p using
      ++ the single factor bound algorithm and knowing that p has for possible 
      ++ splitting of its degree listOfDegrees.
      ++ f is supposed not having any repeated factor (this is not checked).

    factorSquareFree : (UP,List N,N) -> Factored UP
      ++ factorSquareFree(p,listOfDegrees,r) factorizes the polynomial p using
      ++ the single factor bound algorithm, knowing that p has for possible 
      ++ splitting of its degree listOfDegrees and that p has at least r
      ++ factors.
      ++ f is supposed not having any repeated factor (this is not checked).

    factorSquareFree : (UP,N,N) -> Factored UP
      ++ factorSquareFree(p,d,r) factorizes the polynomial p using the single
      ++ factor bound algorithm, knowing that d divides the degree of all 
      ++ factors of p and that p has at least r factors.
      ++ f is supposed not having any repeated factor (this is not checked).

    factorOfDegree : (P,UP) -> Union(UP,"failed")
      ++ factorOfDegree(d,p) returns a factor of p of degree d.

    factorOfDegree : (P,UP,N) -> Union(UP,"failed")
      ++ factorOfDegree(d,p,r) returns a factor of p of degree
      ++ d knowing that p has at least r factors.

    factorOfDegree : (P,UP,List N) -> Union(UP,"failed")
      ++ factorOfDegree(d,p,listOfDegrees) returns a factor 
      ++ of p of degree d knowing that p has for possible splitting of its
      ++ degree listOfDegrees.

    factorOfDegree : (P,UP,List N,N) -> Union(UP,"failed")
      ++ factorOfDegree(d,p,listOfDegrees,r) returns a factor 
      ++ of p of degree d knowing that p has for possible splitting of its
      ++ degree listOfDegrees, and that p has at least r factors.

    factorOfDegree : (P,UP,List N,N,Boolean) -> Union(UP,"failed")
      ++ factorOfDegree(d,p,listOfDegrees,r,sqf) returns a
      ++ factor of p of degree d knowing that p has for possible splitting of
      ++ its degree listOfDegrees, and that p has at least r factors.
      ++ If \spad{sqf=true} the polynomial is assumed to be square free  
      ++ (without repeated factors).

    henselFact : (UP,Boolean) -> FinalFact
      ++ henselFact(p,sqf) returns the factorization of p, the result
      ++ is a Record such that \spad{contp=}content p,
      ++ \spad{factors=}List of irreducible factors of p with exponent.
      ++ If \spad{sqf=true} the polynomial is assumed to be square free 
      ++ (without repeated factors).

    btwFact : (UP,Boolean,Set N,N) -> FinalFact
      ++ btwFact(p,sqf,pd,r) returns the factorization of p, the result
      ++ is a Record such that \spad{contp=}content p,
      ++ \spad{factors=}List of irreducible factors of p with exponent.
      ++ If \spad{sqf=true} the polynomial is assumed to be square free 
      ++ (without repeated factors).
      ++ pd is the \spadtype{Set} of possible degrees. r is a lower bound for
      ++ the number of factors of p. Please do not use this function in your
      ++ code because its design may change.

  CODE ==> add

    fUnion ==> Union("nil", "sqfr", "irred", "prime")
    FFE ==> Record(flg:fUnion, fctr:UP, xpnt:Z) -- Flag-Factor-Exponent
    DDFact ==> Record(prime:Z, ddfactors:DDList) -- Distinct Degree Factors
    HLR ==> Record(plist:List UP, modulo:Z) -- HenselLift Record

    mussertrials: P := 5
    stopmussertrials: P := 8
    usesinglefactorbound: Boolean := true
    tryfunctionaldecomposition: Boolean := true
    useeisensteincriterion: Boolean := true

    useEisensteinCriterion?():Boolean == useeisensteincriterion

    useEisensteinCriterion(b:Boolean):Boolean ==
      (useeisensteincriterion,b) := (b,useeisensteincriterion)
      b

    tryFunctionalDecomposition?():Boolean == tryfunctionaldecomposition

    tryFunctionalDecomposition(b:Boolean):Boolean ==
      (tryfunctionaldecomposition,b) := (b,tryfunctionaldecomposition)
      b

    useSingleFactorBound?():Boolean == usesinglefactorbound

    useSingleFactorBound(b:Boolean):Boolean ==
      (usesinglefactorbound,b) := (b,usesinglefactorbound)
      b

    stopMusserTrials():P == stopmussertrials

    stopMusserTrials(n:P):P ==
      (stopmussertrials,n) := (n,stopmussertrials)
      n

    musserTrials():P == mussertrials

    musserTrials(n:P):P ==
      (mussertrials,n) := (n,mussertrials)
      n

    import GaloisGroupFactorizationUtilities(Z,UP,Float)

    import GaloisGroupPolynomialUtilities(Z,UP)

    import IntegerPrimesPackage(Z)
    import IntegerFactorizationPackage(Z)

    import ModularDistinctDegreeFactorizer(UP)

    eisensteinIrreducible?(f:UP):Boolean ==
      rf := reductum f
      c: Z := content rf
      zero? c => false
      unit? c => false
      lc := leadingCoefficient f
      tc := lc
      while not zero? rf repeat
        tc := leadingCoefficient rf
        rf := reductum rf
      for p in factors(factor c)$Factored(Z) repeat
        if (p.exponent = 1) and (not zero? (lc rem p.factor)) and
         (not zero? (tc rem ((p.factor)**2))) then return true
      false

    numberOfFactors(ddlist:DDList):N ==
      n: N := 0
      d: Z := 0
      for dd in ddlist repeat
        n := n +
          zero? (d := degree(dd.factor)::Z) => 1
          (d quo dd.degree)::N
      n

    -- local function, returns the a Set of shifted elements
    shiftSet(s:Set N,shift:N):Set N == set [ e+shift for e in parts s ]

    -- local function, returns the "reductum" of an Integer (as chain of bits)
    reductum(n:Z):Z == n-shift(1,length(n)-1)

    -- local function, returns an integer with level lowest bits set to 1
    seed(level:Z):Z == shift(1,level)-1

    -- local function, returns the next number (as a chain of bit) for
    -- factor reconciliation of a given level (which is the number of
    -- extraneaous factors involved) or "End of level" if not any
    nextRecNum(levels:N,level:Z,n:Z):Union("End of level",Z) ==
      if (l := length n)<levels then return(n+shift(1,l-1))
      (n=shift(seed(level),levels-level)) => "End of level"
      b: Z := 1
      while ((l-b) = (lr := length(n := reductum n)))@Boolean repeat b := b+1
      reductum(n)+shift(seed(b+1),lr)

    -- local function, return the set of N, 0..n
    fullSet(n:N):Set N == set [ i for i in 0..n ]

    modularFactor(p:UP):MFact ==
      not (abs(content(p)) = 1) => 
       error "modularFactor: the polynomial is not primitive."
      zero? (n := degree p) => [0,[p]]
      -- declarations --
      cprime: Z := 2
      trials: List DDFact := empty()
      d: Set N := fullSet(n)
      dirred: Set N := set [0,n]
      s: Set N := empty()
      ddlist: DDList := empty()
      degfact: N := 0
      nf: N := stopmussertrials+1
      i: Z
      -- Musser, see [3] --
      diffp := differentiate p
      for i in 1..mussertrials | nf>stopmussertrials repeat
        -- test 1: cprime divides leading coefficient
        -- test 2: "bad" primes: (in future: use Dedekind's Criterion)
        while (zero? ((leadingCoefficient p) rem cprime)) or
         (not zero? degree gcd(p,diffp,cprime)) repeat
          cprime := nextPrime(cprime)
        ddlist := ddFact(p,cprime)
        -- degree compatibility: See [3] --
        s := set [0]
        for f in ddlist repeat
          degfact := f.degree::N
          if not zero? degfact then 
            for j in 1..(degree(f.factor) quo degfact) repeat
              s := union(s, shiftSet(s,degfact))
        trials := cons([cprime,ddlist]$DDFact,trials)
        d := intersect(d, s)
        d = dirred => return [0,[p]] -- p is irreducible
        cprime := nextPrime(cprime)
        nf := numberOfFactors ddlist

      -- choose the one with the smallest number of factors
      choice := first trials
      nfc := numberOfFactors(choice.ddfactors)
      for t in rest trials repeat
        nf := numberOfFactors(t.ddfactors)
        if nf<nfc or ((nf=nfc) and (t.prime>choice.prime)) then
          nfc := nf
          choice := t
      cprime := choice.prime
      -- HenselLift$GHENSEL expects the degree 0 factor first 
      [cprime,separateFactors(choice.ddfactors,cprime)]

    degreePartition(ddlist:DDList):Multiset N ==
      dp: Multiset N := empty()
      d: N := 0
      dd: N := 0
      for f in ddlist repeat
        zero? (d := degree(f.factor)) => dp := insert!(0,dp)
        dd := f.degree::N
        dp := insert!(dd,dp,d quo dd)
      dp

    import GeneralHenselPackage(Z,UP)
    import UnivariatePolynomialDecompositionPackage(Z,UP)
    import BrillhartTests(UP) -- See [2]

    -- local function, finds the factors of f primitive, square-free, with
    -- positive leading coefficient and non zero trailing coefficient,
    -- using the overall bound technique. If pdecomp is true then look
    -- for a functional decomposition of f.
    henselfact(f:UP,pdecomp:Boolean):List UP ==
      if brillhartIrreducible? f or
       (useeisensteincriterion => eisensteinIrreducible? f ; false)
      then return [f]
      cf: Union(LR,"failed")
      if pdecomp and tryfunctionaldecomposition then
        cf := monicDecomposeIfCan f
      else
        cf := "failed"
      cf case "failed" =>
        m := modularFactor f
        zero? (cprime := m.prime) => m.factors
        b: P := (2*leadingCoefficient(f)*beauzamyBound(f)) :: P
        completeHensel(f,m.factors,cprime,b)
      lrf := cf::LR
      "append"/[ henselfact(g(lrf.right),false) for g in
       henselfact(lrf.left,true) ]

    -- local function, returns the complete factorization of its arguments,
    -- using the single-factor bound technique 
    completeFactor(f:UP,lf:List UP,cprime:Z,pk:P,r:N,d:Set N):List UP ==
      lc := leadingCoefficient f
      f0 := coefficient(f,0)
      ltrue: List UP := empty()
      found? := true
      degf: N := 0
      degg: N := 0
      g0: Z := 0
      g: UP := 0
      rg: N := 0
      nb: Z := 0
      lg: List UP := empty()
      b: P := 1
      dg: Set N := empty()
      llg: HLR := [empty(),0]
      levels: N := #lf
      level: Z := 1
      ic: Union(Z,"End of level") := 0
      i: Z := 0
      while level<levels repeat
        -- try all possible factors with degree in d
        ic := seed(level)
        while ((not found?) and (ic case Z)) repeat
          i := ic::Z
          degg := 0
          g0 := 1 -- LC algorithm
          for j in 1..levels repeat
            if bit?(i,j-1) then
              degg := degg+degree lf.j
              g0 := g0*coefficient(lf.j,0) -- LC algorithm
          g0 := symmetricRemainder(lc*g0,pk) -- LC algorithm
          if member?(degg,d) and (((lc*f0) exquo g0) case Z) then 
            --                       LC algorithm
            g := lc::UP -- build the possible factor -- LC algorithm
            for j in 1..levels repeat if bit?(i,j-1) then g := g*lf.j
            g := primitivePart reduction(g,pk)
            f1 := f exquo g
            if f1 case UP then -- g is a true factor
              found? := true
              -- remove the factors of g from lf
              nb := 1
              for j in 1..levels repeat
                if bit?(i,j-1) then 
                  swap!(lf,j,nb)
                  nb := nb+1
              lg := lf
              lf := rest(lf,level::N)
              setrest!(rest(lg,(level-1)::N),empty()$List(UP))
              f := f1::UP
              lc := leadingCoefficient f
              f0 := coefficient(f,0)
              -- is g irreducible?
              dg := select(x+->x <= degg,d)
              if not(dg=set [0,degg]) then -- implies degg >= 2
                rg := max(2,r+level-levels)::N
                b := (2*leadingCoefficient(g)*singleFactorBound(g,rg)) :: P
                if b>pk and (not brillhartIrreducible?(g)) and
                  (useeisensteincriterion => not eisensteinIrreducible?(g) ;
                  true)
                then
                  -- g may be reducible
                  llg := HenselLift(g,lg,cprime,b)
                  gpk: P := (llg.modulo)::P 
                  -- In case exact factorisation has been reached by
                  -- HenselLift before coefficient bound.
                  if gpk<b then
                    lg := llg.plist
                  else
                    lg := completeFactor(g,llg.plist,cprime,gpk,rg,dg)
                else lg := [ g ] -- g irreducible
              else lg := [ g ] -- g irreducible
              ltrue := append(ltrue,lg)
              r := max(2,(r-#lg))::N
              degf := degree f
              d := select(x+->x <= degf,d)
              if degf<=1 then -- lf exhausted
                if (degf = 1) then
                  ltrue := cons(f,ltrue)
                return ltrue -- 1st exit, all factors found
              else -- can we go on with the same pk?
                b := (2*lc*singleFactorBound(f,r)) :: P
                if b>pk then -- unlucky: no we can't
                  llg := HenselLift(f,lf,cprime,b) -- I should reformulate
                   -- the lifting probleme, but hadn't time for that.
                   -- In any case, such case should be quite exceptional.
                  lf := llg.plist
                  pk := (llg.modulo)::P
                  -- In case exact factorisation has been reached by
                  -- HenselLift before coefficient bound.
                  if pk<b then return append(lf,ltrue) -- 2nd exit
                  level := 1
          ic := nextRecNum(levels,level,i)
        if found? then
          levels := #lf
          found? := false
        if not (ic case Z) then level := level+1
      cons(f,ltrue) -- 3rd exit, the last factor was irreducible but not "true"

    -- local function, returns the set of elements "divided" by an integer
    divideSet(s:Set N, n:N):Set N ==
      l: List N := [ 0 ]
      for e in parts s repeat
        if (ee := (e exquo n)$N) case N then l := cons(ee::N,l)
      set(l)

    -- Beauzamy-Trevisan-Wang FACTOR, see [1] with some refinements
    -- and some differences. f is assumed to be primitive, square-free
    -- and with positive leading coefficient. If pdecomp is true then
    -- look for a functional decomposition of f. 
    btwFactor(f:UP,d:Set N,r:N,pdecomp:Boolean):List UP ==
      df := degree f
      not (max(d) = df) => error "btwFact: Bad arguments"
      reverse?: Boolean := false
      negativelc?: Boolean := false
      (d = set [0,df]) => [ f ]
      if abs(coefficient(f,0))<abs(leadingCoefficient(f)) then
        f := reverse f
        reverse? := true
      brillhartIrreducible? f or 
       (useeisensteincriterion => eisensteinIrreducible?(f) ; false) =>
        if reverse? then [ reverse f ] else [ f ]
      if leadingCoefficient(f)<0 then
        f := -f
        negativelc? := true
      cf: Union(LR,"failed")
      if pdecomp and tryfunctionaldecomposition then
        cf := monicDecomposeIfCan f
      else
        cf := "failed"
      if cf case "failed" then
        m := modularFactor f
        zero? (cprime := m.prime) => 
          if reverse? then
            if negativelc? then return [ -reverse f ]
            else return [ reverse f ]
          else if negativelc? then return [ -f ]
               else return [ f ]
        if noLinearFactor? f then d := remove(1,d)
        lc := leadingCoefficient f
        f0 := coefficient(f,0)
        b: P := (2*lc*singleFactorBound(f,r)) :: P -- LC algorithm
        lm := HenselLift(f,m.factors,cprime,b)
        lf := lm.plist
        pk: P := (lm.modulo)::P
        if ground? first lf then lf := rest lf
        -- in case exact factorisation has been reached by HenselLift
        -- before coefficient bound
        if not pk < b then lf := completeFactor(f,lf,cprime,pk,r,d)
      else
        lrf := cf::LR
        dh := degree lrf.right
        lg := btwFactor(lrf.left,divideSet(d,dh),2,true)
        lf: List UP := empty()
        for i in 1..#lg repeat
          g := lg.i
          dgh := (degree g)*dh
          df := subtractIfCan(df,dgh)::N
          lfg := btwFactor(g(lrf.right),
           select(x+->x <= dgh,d),max(2,r-df)::N,false)
          lf := append(lf,lfg)
          r := max(2,r-#lfg)::N
      if reverse? then lf := [ reverse(fact) for fact in lf ]
      for i in 1..#lf repeat
        if leadingCoefficient(lf.i)<0 then lf.i := -lf.i
        -- because we assume f with positive leading coefficient
      lf

    makeFR(flist:FinalFact):Factored UP ==
      ctp := factor flist.contp
      fflist: List FFE := empty()
      for ff in flist.factors repeat
        fflist := cons(["prime", ff.irr, ff.pow]$FFE, fflist)
      for fc in factorList ctp repeat
        fflist := cons([fc.flg, fc.fctr::UP, fc.xpnt]$FFE, fflist)
      makeFR(unit(ctp)::UP, fflist)

    import IntegerRoots(Z)

    -- local function, factorizes a quadratic polynomial
    quadratic(p:UP):List UP ==
      a := leadingCoefficient p
      b := coefficient(p,1)
      d := b**2-4*a*coefficient(p,0)
      r := perfectSqrt(d)
      r case "failed" => [p]
      b := b+(r::Z)
      a := 2*a
      d := gcd(a,b)
      if not (d = 1) then
        a := a quo d
        b := b quo d
      f: UP := monomial(a,1)+monomial(b,0)
      cons(f,[(p exquo f)::UP])

    isPowerOf2(n:Z): Boolean ==
       n = 1 => true
       qr: Record(quotient: Z, remainder: Z) := divide(n,2)
       qr.remainder = 1 => false
       isPowerOf2 qr.quotient

    subMinusX(supPol: SUPZ): UP ==
       minusX: SUPZ := monomial(-1,1)$SUPZ
       unmakeSUP(elt(supPol,minusX)$SUPZ)

    henselFact(f:UP, sqf:Boolean):FinalFact ==
      factorlist: List(ParFact) := empty()
      -- make m primitive
      c: Z := content f
      f := (f exquo c)::UP
      -- make the leading coefficient positive
      if leadingCoefficient f < 0 then
        c := -c
        f := -f
      -- is x**d factor of f
      if (d := minimumDegree f) > 0 then
        f := monicDivide(f,monomial(1,d)).quotient
        factorlist := [[monomial(1,1),d]$ParFact]
      d := degree f
      -- is f constant?
      zero? d => [c,factorlist]$FinalFact
      -- is f linear?
      (d = 1) => [c,cons([f,1]$ParFact,factorlist)]$FinalFact
      lcPol: UP := leadingCoefficient(f) :: UP
      -- is f cyclotomic (x**n - 1)?
      -lcPol = reductum(f) =>    -- if true, both will = 1
        for fac in map(z+->unmakeSUP(z)$UP,
         cyclotomicDecomposition(d)$CYC)$ListFunctions2(SUPZ,UP) repeat 
          factorlist := cons([fac,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact
      -- is f odd cyclotomic (x**(2*n+1) + 1)?
      odd?(d) and (lcPol = reductum(f)) =>
        for sfac in cyclotomicDecomposition(d)$CYC repeat
           fac := subMinusX sfac
           if leadingCoefficient fac < 0 then fac := -fac
           factorlist := cons([fac,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact
      -- is the poly of the form x**n + 1 with n a power of 2?
      -- if so, then irreducible
      isPowerOf2(d) and (lcPol = reductum(f)) =>
        factorlist := cons([f,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact
      -- other special cases to implement...
      -- f is square-free :
      sqf => [c, append([[pf,1]$ParFact for pf in henselfact(f,true)],
       factorlist)]$FinalFact
      -- f is not square-free :
      sqfflist := factors squareFree f
      for sqfr in sqfflist repeat
        mult := sqfr.exponent
        sqff := sqfr.factor
        d := degree sqff
        (d = 1) => factorlist := cons([sqff,mult]$ParFact,factorlist)
        d=2 =>
          factorlist := append([[pf,mult]$ParFact for pf in quadratic(sqff)],
           factorlist)
        factorlist := append([[pf,mult]$ParFact for pf in
         henselfact(sqff,true)],factorlist) 
      [c,factorlist]$FinalFact

    btwFact(f:UP, sqf:Boolean, fd:Set N, r:N):FinalFact ==
      d := degree f
      not(max(fd)=d) => error "btwFact: Bad arguments"
      factorlist: List(ParFact) := empty()
      -- make m primitive
      c: Z := content f
      f := (f exquo c)::UP
      -- make the leading coefficient positive
      if leadingCoefficient f < 0 then
        c := -c
        f := -f
      -- is x**d factor of f
      if (maxd := minimumDegree f) > 0 then
        f := monicDivide(f,monomial(1,maxd)).quotient
        factorlist := [[monomial(1,1),maxd]$ParFact]
        r := max(2,r-maxd)::N
        d := subtractIfCan(d,maxd)::N
        fd := select(x+->x <= d,fd)
      -- is f constant?
      zero? d => [c,factorlist]$FinalFact
      -- is f linear?
      (d = 1) => [c,cons([f,1]$ParFact,factorlist)]$FinalFact
      lcPol: UP := leadingCoefficient(f) :: UP
      -- is f cyclotomic (x**n - 1)?
      -lcPol = reductum(f) =>    -- if true, both will = 1
        for fac in map(z+->unmakeSUP(z)$UP,
         cyclotomicDecomposition(d)$CYC)$ListFunctions2(SUPZ,UP) repeat 
          factorlist := cons([fac,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact
      -- is f odd cyclotomic (x**(2*n+1) + 1)?
      odd?(d) and (lcPol = reductum(f)) =>
        for sfac in cyclotomicDecomposition(d)$CYC repeat
           fac := subMinusX sfac
           if leadingCoefficient fac < 0 then fac := -fac
           factorlist := cons([fac,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact
      -- is the poly of the form x**n + 1 with n a power of 2?
      -- if so, then irreducible
      isPowerOf2(d) and (lcPol = reductum(f)) =>
        factorlist := cons([f,1]$ParFact,factorlist)
        [c,factorlist]$FinalFact
      -- other special cases to implement...
      -- f is square-free :
      sqf => [c, append([[pf,1]$ParFact for pf in btwFactor(f,fd,r,true)],
       factorlist)]$FinalFact
      -- f is not square-free :
      sqfflist := factors squareFree(f)
      if ((#(sqfflist)) = 1) then -- indeed f was a power of a square-free 
        r := max(r quo ((first sqfflist).exponent),2)::N
      else
        r := 2
      for sqfr in sqfflist repeat
        mult := sqfr.exponent
        sqff := sqfr.factor
        d := degree sqff
        (d = 1) => 
          factorlist := cons([sqff,mult]$ParFact,factorlist)
          maxd := (max(fd)-mult)::N
          fd := select(x+->x <= maxd,fd)
        d=2 =>
          factorlist := append([[pf,mult]$ParFact for pf in quadratic(sqff)],
           factorlist)
          maxd := (max(fd)-2*mult)::N
          fd := select(x+->x <= maxd,fd)
        factorlist := append([[pf,mult]$ParFact for pf in 
         btwFactor(sqff,select(x+->x <= d,fd),r,true)],factorlist)
        maxd := (max(fd)-d*mult)::N
        fd := select(x+->x <= maxd,fd)
      [c,factorlist]$FinalFact

    factor(f:UP):Factored UP ==
      makeFR
        usesinglefactorbound => btwFact(f,false,fullSet(degree f),2)
        henselFact(f,false)

    -- local function, returns true if the sum of the elements of the list
    -- is not the degree.
    errorsum?(d:N,ld:List N):Boolean == not (d = +/ld)

    -- local function, turns list of degrees into a Set
    makeSet(ld:List N):Set N ==
      s := set [0]
      for d in ld repeat s := union(s,shiftSet(s,d))
      s
      
    factor(f:UP,ld:List N,r:N):Factored UP ==
      errorsum?(degree f,ld) => error "factor: Bad arguments"
      makeFR btwFact(f,false,makeSet(ld),r)

    factor(f:UP,r:N):Factored UP == makeFR btwFact(f,false,fullSet(degree f),r)
    
    factor(f:UP,ld:List N):Factored UP == factor(f,ld,2)

    factor(f:UP,d:N,r:N):Factored UP ==
      n := (degree f) exquo d
      n case "failed" => error "factor: Bad arguments"
      factor(f,new(n::N,d)$List(N),r)

    factorSquareFree(f:UP):Factored UP ==
      makeFR
        usesinglefactorbound => btwFact(f,true,fullSet(degree f),2)
        henselFact(f,true)

    factorSquareFree(f:UP,ld:List(N),r:N):Factored UP ==
      errorsum?(degree f,ld) => error "factorSquareFree: Bad arguments"
      makeFR btwFact(f,true,makeSet(ld),r)

    factorSquareFree(f:UP,r:N):Factored UP ==
      makeFR btwFact(f,true,fullSet(degree f),r)
    
    factorSquareFree(f:UP,ld:List N):Factored UP == factorSquareFree(f,ld,2)

    factorSquareFree(f:UP,d:N,r:N):Factored UP ==
      n := (degree f) exquo d
      n case "failed" => error "factorSquareFree: Bad arguments"
      factorSquareFree(f,new(n::N,d)$List(N),r)

    factorOfDegree(d:P,p:UP,ld:List N,r:N,sqf:Boolean):Union(UP,"failed") ==
      dp := degree p
      errorsum?(dp,ld) => error "factorOfDegree: Bad arguments"
      ((d::N) = 1) and noLinearFactor?(p) => "failed"
      lf := btwFact(p,sqf,makeSet(ld),r).factors
      for f in lf repeat
        degree(f.irr)=d => return f.irr
      "failed"

    factorOfDegree(d:P,p:UP,ld:List N,r:N):Union(UP,"failed") ==
      factorOfDegree(d,p,ld,r,false)

    factorOfDegree(d:P,p:UP,r:N):Union(UP,"failed") ==
      factorOfDegree(d,p,new(degree p,1)$List(N),r,false)

    factorOfDegree(d:P,p:UP,ld:List N):Union(UP,"failed") ==
      factorOfDegree(d,p,ld,2,false)

    factorOfDegree(d:P,p:UP):Union(UP,"failed") ==
      factorOfDegree(d,p,new(degree p,1)$List(N),2,false)