/usr/share/axiom-20170501/src/algebra/GALFACT.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 | )abbrev package GALFACT GaloisGroupFactorizer
++ Author: Frederic Lehobey
++ Date Created: 28 June 1994
++ Date Last Updated: 11 July 1997
++ References:
++ [1] Bernard Beauzamy, Vilmar Trevisan and Paul S. Wang, Polynomial
++ Factorization: Sharp Bounds, Efficient Algorithms,
++ J. Symbolic Computation (1993) 15, 393-413
++ [2] John Brillhart, Note on Irreducibility Testing,
++ Mathematics of Computation, vol. 35, num. 35, Oct. 1980, 1379-1381
++ [3] David R. Musser, On the Efficiency of a Polynomial Irreducibility Test,
++ Journal of the ACM, Vol. 25, No. 2, April 1978, pp. 271-282
++ Description:
++ \spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.
-- improvements to do :
-- + reformulate the lifting problem in completeFactor -- See [1] (hard)
-- + implement algorithm RC -- See [1] (easy)
-- + use Dedekind's criterion to prove sometimes irreducibility (easy)
-- or even to improve early detection of true factors (hard)
-- + replace Sets by Bits
GaloisGroupFactorizer(UP) : SIG == CODE where
UP: UnivariatePolynomialCategory Integer
Z ==> Integer
N ==> NonNegativeInteger
P ==> PositiveInteger
CYC ==> CyclotomicPolynomialPackage()
SUPZ ==> SparseUnivariatePolynomial Z
ParFact ==> Record(irr: UP, pow: Z)
FinalFact ==> Record(contp: Z, factors: List ParFact)
DDRecord ==> Record(factor: UP, degree: Z) -- a Distinct-Degree factor
DDList ==> List DDRecord
MFact ==> Record(prime: Z,factors: List UP) -- Modular Factors
LR ==> Record(left: UP, right: UP) -- Functional decomposition
SIG ==> with
makeFR : FinalFact -> Factored UP
++ makeFR(flist) turns the final factorization of henselFact into a
++ \spadtype{Factored} object.
degreePartition : DDList -> Multiset N
++ degreePartition(ddfactorization) returns the degree partition of
++ the polynomial f modulo p where ddfactorization is the distinct
++ degree factorization of f computed by ddFact for some prime p.
musserTrials : () -> P
++ musserTrials() returns the number of primes that are tried in
++ \spadfun{modularFactor}.
musserTrials : P -> P
++ musserTrials(n) sets to n the number of primes to be tried in
++ \spadfun{modularFactor} and returns the previous value.
stopMusserTrials : () -> P
++ stopMusserTrials() returns the bound on the number of factors for
++ which \spadfun{modularFactor} stops to look for an other prime. You
++ will have to remember that the step of recombining the extraneous
++ factors may take up to \spad{2**stopMusserTrials()} trials.
stopMusserTrials : P -> P
++ stopMusserTrials(n) sets to n the bound on the number of factors for
++ which \spadfun{modularFactor} stops to look for an other prime. You
++ will have to remember that the step of recombining the extraneous
++ factors may take up to \spad{2**n} trials. Returns the previous
++ value.
numberOfFactors : DDList -> N
++ numberOfFactors(ddfactorization) returns the number of factors of
++ the polynomial f modulo p where ddfactorization is the distinct
++ degree factorization of f computed by ddFact for some prime p.
modularFactor : UP -> MFact
++ modularFactor(f) chooses a "good" prime and returns the factorization
++ of f modulo this prime in a form that may be used by
++ completeHensel. If prime is zero
++ it means that f has been proved to be irreducible over the integers
++ or that f is a unit (1 or -1).
++ f shall be primitive (content(p)=1) and square free
++ (without repeated factors).
useSingleFactorBound? : () -> Boolean
++ useSingleFactorBound?() returns \spad{true} if algorithm with single
++ factor bound is used for factorization, \spad{false} for algorithm
++ with overall bound.
useSingleFactorBound : Boolean -> Boolean
++ useSingleFactorBound(b) chooses the algorithm to be used by the
++ factorizers: \spad{true} for algorithm with single
++ factor bound, \spad{false} for algorithm with overall bound.
++ Returns the previous value.
useEisensteinCriterion? : () -> Boolean
++ useEisensteinCriterion?() returns \spad{true} if factorizers
++ check Eisenstein's criterion before factoring.
useEisensteinCriterion : Boolean -> Boolean
++ useEisensteinCriterion(b) chooses whether factorizers check
++ Eisenstein's criterion before factoring: \spad{true} for
++ using it, \spad{false} else. Returns the previous value.
eisensteinIrreducible? : UP -> Boolean
++ eisensteinIrreducible?(p) returns \spad{true} if p can be
++ shown to be irreducible by Eisenstein's criterion,
++ \spad{false} is inconclusive.
tryFunctionalDecomposition? : () -> Boolean
++ tryFunctionalDecomposition?() returns \spad{true} if
++ factorizers try functional decomposition of polynomials before
++ factoring them.
tryFunctionalDecomposition : Boolean -> Boolean
++ tryFunctionalDecomposition(b) chooses whether factorizers have
++ to look for functional decomposition of polynomials
++ (\spad{true}) or not (\spad{false}). Returns the previous value.
factor : UP -> Factored UP
++ factor(p) returns the factorization of p over the integers.
factor : (UP,N) -> Factored UP
++ factor(p,r) factorizes the polynomial p using the single factor bound
++ algorithm and knowing that p has at least r factors.
factor : (UP,List N) -> Factored UP
++ factor(p,listOfDegrees) factorizes the polynomial p using the single
++ factor bound algorithm and knowing that p has for possible
++ splitting of its degree listOfDegrees.
factor : (UP,List N,N) -> Factored UP
++ factor(p,listOfDegrees,r) factorizes the polynomial p using the single
++ factor bound algorithm, knowing that p has for possible
++ splitting of its degree listOfDegrees and that p has at least r
++ factors.
factor : (UP,N,N) -> Factored UP
++ factor(p,d,r) factorizes the polynomial p using the single
++ factor bound algorithm, knowing that d divides the degree of all
++ factors of p and that p has at least r factors.
factorSquareFree : UP -> Factored UP
++ factorSquareFree(p) returns the factorization of p which is supposed
++ not having any repeated factor (this is not checked).
factorSquareFree : (UP,N) -> Factored UP
++ factorSquareFree(p,r) factorizes the polynomial p using the single
++ factor bound algorithm and knowing that p has at least r factors.
++ f is supposed not having any repeated factor (this is not checked).
factorSquareFree : (UP,List N) -> Factored UP
++ factorSquareFree(p,listOfDegrees) factorizes the polynomial p using
++ the single factor bound algorithm and knowing that p has for possible
++ splitting of its degree listOfDegrees.
++ f is supposed not having any repeated factor (this is not checked).
factorSquareFree : (UP,List N,N) -> Factored UP
++ factorSquareFree(p,listOfDegrees,r) factorizes the polynomial p using
++ the single factor bound algorithm, knowing that p has for possible
++ splitting of its degree listOfDegrees and that p has at least r
++ factors.
++ f is supposed not having any repeated factor (this is not checked).
factorSquareFree : (UP,N,N) -> Factored UP
++ factorSquareFree(p,d,r) factorizes the polynomial p using the single
++ factor bound algorithm, knowing that d divides the degree of all
++ factors of p and that p has at least r factors.
++ f is supposed not having any repeated factor (this is not checked).
factorOfDegree : (P,UP) -> Union(UP,"failed")
++ factorOfDegree(d,p) returns a factor of p of degree d.
factorOfDegree : (P,UP,N) -> Union(UP,"failed")
++ factorOfDegree(d,p,r) returns a factor of p of degree
++ d knowing that p has at least r factors.
factorOfDegree : (P,UP,List N) -> Union(UP,"failed")
++ factorOfDegree(d,p,listOfDegrees) returns a factor
++ of p of degree d knowing that p has for possible splitting of its
++ degree listOfDegrees.
factorOfDegree : (P,UP,List N,N) -> Union(UP,"failed")
++ factorOfDegree(d,p,listOfDegrees,r) returns a factor
++ of p of degree d knowing that p has for possible splitting of its
++ degree listOfDegrees, and that p has at least r factors.
factorOfDegree : (P,UP,List N,N,Boolean) -> Union(UP,"failed")
++ factorOfDegree(d,p,listOfDegrees,r,sqf) returns a
++ factor of p of degree d knowing that p has for possible splitting of
++ its degree listOfDegrees, and that p has at least r factors.
++ If \spad{sqf=true} the polynomial is assumed to be square free
++ (without repeated factors).
henselFact : (UP,Boolean) -> FinalFact
++ henselFact(p,sqf) returns the factorization of p, the result
++ is a Record such that \spad{contp=}content p,
++ \spad{factors=}List of irreducible factors of p with exponent.
++ If \spad{sqf=true} the polynomial is assumed to be square free
++ (without repeated factors).
btwFact : (UP,Boolean,Set N,N) -> FinalFact
++ btwFact(p,sqf,pd,r) returns the factorization of p, the result
++ is a Record such that \spad{contp=}content p,
++ \spad{factors=}List of irreducible factors of p with exponent.
++ If \spad{sqf=true} the polynomial is assumed to be square free
++ (without repeated factors).
++ pd is the \spadtype{Set} of possible degrees. r is a lower bound for
++ the number of factors of p. Please do not use this function in your
++ code because its design may change.
CODE ==> add
fUnion ==> Union("nil", "sqfr", "irred", "prime")
FFE ==> Record(flg:fUnion, fctr:UP, xpnt:Z) -- Flag-Factor-Exponent
DDFact ==> Record(prime:Z, ddfactors:DDList) -- Distinct Degree Factors
HLR ==> Record(plist:List UP, modulo:Z) -- HenselLift Record
mussertrials: P := 5
stopmussertrials: P := 8
usesinglefactorbound: Boolean := true
tryfunctionaldecomposition: Boolean := true
useeisensteincriterion: Boolean := true
useEisensteinCriterion?():Boolean == useeisensteincriterion
useEisensteinCriterion(b:Boolean):Boolean ==
(useeisensteincriterion,b) := (b,useeisensteincriterion)
b
tryFunctionalDecomposition?():Boolean == tryfunctionaldecomposition
tryFunctionalDecomposition(b:Boolean):Boolean ==
(tryfunctionaldecomposition,b) := (b,tryfunctionaldecomposition)
b
useSingleFactorBound?():Boolean == usesinglefactorbound
useSingleFactorBound(b:Boolean):Boolean ==
(usesinglefactorbound,b) := (b,usesinglefactorbound)
b
stopMusserTrials():P == stopmussertrials
stopMusserTrials(n:P):P ==
(stopmussertrials,n) := (n,stopmussertrials)
n
musserTrials():P == mussertrials
musserTrials(n:P):P ==
(mussertrials,n) := (n,mussertrials)
n
import GaloisGroupFactorizationUtilities(Z,UP,Float)
import GaloisGroupPolynomialUtilities(Z,UP)
import IntegerPrimesPackage(Z)
import IntegerFactorizationPackage(Z)
import ModularDistinctDegreeFactorizer(UP)
eisensteinIrreducible?(f:UP):Boolean ==
rf := reductum f
c: Z := content rf
zero? c => false
unit? c => false
lc := leadingCoefficient f
tc := lc
while not zero? rf repeat
tc := leadingCoefficient rf
rf := reductum rf
for p in factors(factor c)$Factored(Z) repeat
if (p.exponent = 1) and (not zero? (lc rem p.factor)) and
(not zero? (tc rem ((p.factor)**2))) then return true
false
numberOfFactors(ddlist:DDList):N ==
n: N := 0
d: Z := 0
for dd in ddlist repeat
n := n +
zero? (d := degree(dd.factor)::Z) => 1
(d quo dd.degree)::N
n
-- local function, returns the a Set of shifted elements
shiftSet(s:Set N,shift:N):Set N == set [ e+shift for e in parts s ]
-- local function, returns the "reductum" of an Integer (as chain of bits)
reductum(n:Z):Z == n-shift(1,length(n)-1)
-- local function, returns an integer with level lowest bits set to 1
seed(level:Z):Z == shift(1,level)-1
-- local function, returns the next number (as a chain of bit) for
-- factor reconciliation of a given level (which is the number of
-- extraneaous factors involved) or "End of level" if not any
nextRecNum(levels:N,level:Z,n:Z):Union("End of level",Z) ==
if (l := length n)<levels then return(n+shift(1,l-1))
(n=shift(seed(level),levels-level)) => "End of level"
b: Z := 1
while ((l-b) = (lr := length(n := reductum n)))@Boolean repeat b := b+1
reductum(n)+shift(seed(b+1),lr)
-- local function, return the set of N, 0..n
fullSet(n:N):Set N == set [ i for i in 0..n ]
modularFactor(p:UP):MFact ==
not (abs(content(p)) = 1) =>
error "modularFactor: the polynomial is not primitive."
zero? (n := degree p) => [0,[p]]
-- declarations --
cprime: Z := 2
trials: List DDFact := empty()
d: Set N := fullSet(n)
dirred: Set N := set [0,n]
s: Set N := empty()
ddlist: DDList := empty()
degfact: N := 0
nf: N := stopmussertrials+1
i: Z
-- Musser, see [3] --
diffp := differentiate p
for i in 1..mussertrials | nf>stopmussertrials repeat
-- test 1: cprime divides leading coefficient
-- test 2: "bad" primes: (in future: use Dedekind's Criterion)
while (zero? ((leadingCoefficient p) rem cprime)) or
(not zero? degree gcd(p,diffp,cprime)) repeat
cprime := nextPrime(cprime)
ddlist := ddFact(p,cprime)
-- degree compatibility: See [3] --
s := set [0]
for f in ddlist repeat
degfact := f.degree::N
if not zero? degfact then
for j in 1..(degree(f.factor) quo degfact) repeat
s := union(s, shiftSet(s,degfact))
trials := cons([cprime,ddlist]$DDFact,trials)
d := intersect(d, s)
d = dirred => return [0,[p]] -- p is irreducible
cprime := nextPrime(cprime)
nf := numberOfFactors ddlist
-- choose the one with the smallest number of factors
choice := first trials
nfc := numberOfFactors(choice.ddfactors)
for t in rest trials repeat
nf := numberOfFactors(t.ddfactors)
if nf<nfc or ((nf=nfc) and (t.prime>choice.prime)) then
nfc := nf
choice := t
cprime := choice.prime
-- HenselLift$GHENSEL expects the degree 0 factor first
[cprime,separateFactors(choice.ddfactors,cprime)]
degreePartition(ddlist:DDList):Multiset N ==
dp: Multiset N := empty()
d: N := 0
dd: N := 0
for f in ddlist repeat
zero? (d := degree(f.factor)) => dp := insert!(0,dp)
dd := f.degree::N
dp := insert!(dd,dp,d quo dd)
dp
import GeneralHenselPackage(Z,UP)
import UnivariatePolynomialDecompositionPackage(Z,UP)
import BrillhartTests(UP) -- See [2]
-- local function, finds the factors of f primitive, square-free, with
-- positive leading coefficient and non zero trailing coefficient,
-- using the overall bound technique. If pdecomp is true then look
-- for a functional decomposition of f.
henselfact(f:UP,pdecomp:Boolean):List UP ==
if brillhartIrreducible? f or
(useeisensteincriterion => eisensteinIrreducible? f ; false)
then return [f]
cf: Union(LR,"failed")
if pdecomp and tryfunctionaldecomposition then
cf := monicDecomposeIfCan f
else
cf := "failed"
cf case "failed" =>
m := modularFactor f
zero? (cprime := m.prime) => m.factors
b: P := (2*leadingCoefficient(f)*beauzamyBound(f)) :: P
completeHensel(f,m.factors,cprime,b)
lrf := cf::LR
"append"/[ henselfact(g(lrf.right),false) for g in
henselfact(lrf.left,true) ]
-- local function, returns the complete factorization of its arguments,
-- using the single-factor bound technique
completeFactor(f:UP,lf:List UP,cprime:Z,pk:P,r:N,d:Set N):List UP ==
lc := leadingCoefficient f
f0 := coefficient(f,0)
ltrue: List UP := empty()
found? := true
degf: N := 0
degg: N := 0
g0: Z := 0
g: UP := 0
rg: N := 0
nb: Z := 0
lg: List UP := empty()
b: P := 1
dg: Set N := empty()
llg: HLR := [empty(),0]
levels: N := #lf
level: Z := 1
ic: Union(Z,"End of level") := 0
i: Z := 0
while level<levels repeat
-- try all possible factors with degree in d
ic := seed(level)
while ((not found?) and (ic case Z)) repeat
i := ic::Z
degg := 0
g0 := 1 -- LC algorithm
for j in 1..levels repeat
if bit?(i,j-1) then
degg := degg+degree lf.j
g0 := g0*coefficient(lf.j,0) -- LC algorithm
g0 := symmetricRemainder(lc*g0,pk) -- LC algorithm
if member?(degg,d) and (((lc*f0) exquo g0) case Z) then
-- LC algorithm
g := lc::UP -- build the possible factor -- LC algorithm
for j in 1..levels repeat if bit?(i,j-1) then g := g*lf.j
g := primitivePart reduction(g,pk)
f1 := f exquo g
if f1 case UP then -- g is a true factor
found? := true
-- remove the factors of g from lf
nb := 1
for j in 1..levels repeat
if bit?(i,j-1) then
swap!(lf,j,nb)
nb := nb+1
lg := lf
lf := rest(lf,level::N)
setrest!(rest(lg,(level-1)::N),empty()$List(UP))
f := f1::UP
lc := leadingCoefficient f
f0 := coefficient(f,0)
-- is g irreducible?
dg := select(x+->x <= degg,d)
if not(dg=set [0,degg]) then -- implies degg >= 2
rg := max(2,r+level-levels)::N
b := (2*leadingCoefficient(g)*singleFactorBound(g,rg)) :: P
if b>pk and (not brillhartIrreducible?(g)) and
(useeisensteincriterion => not eisensteinIrreducible?(g) ;
true)
then
-- g may be reducible
llg := HenselLift(g,lg,cprime,b)
gpk: P := (llg.modulo)::P
-- In case exact factorisation has been reached by
-- HenselLift before coefficient bound.
if gpk<b then
lg := llg.plist
else
lg := completeFactor(g,llg.plist,cprime,gpk,rg,dg)
else lg := [ g ] -- g irreducible
else lg := [ g ] -- g irreducible
ltrue := append(ltrue,lg)
r := max(2,(r-#lg))::N
degf := degree f
d := select(x+->x <= degf,d)
if degf<=1 then -- lf exhausted
if (degf = 1) then
ltrue := cons(f,ltrue)
return ltrue -- 1st exit, all factors found
else -- can we go on with the same pk?
b := (2*lc*singleFactorBound(f,r)) :: P
if b>pk then -- unlucky: no we can't
llg := HenselLift(f,lf,cprime,b) -- I should reformulate
-- the lifting probleme, but hadn't time for that.
-- In any case, such case should be quite exceptional.
lf := llg.plist
pk := (llg.modulo)::P
-- In case exact factorisation has been reached by
-- HenselLift before coefficient bound.
if pk<b then return append(lf,ltrue) -- 2nd exit
level := 1
ic := nextRecNum(levels,level,i)
if found? then
levels := #lf
found? := false
if not (ic case Z) then level := level+1
cons(f,ltrue) -- 3rd exit, the last factor was irreducible but not "true"
-- local function, returns the set of elements "divided" by an integer
divideSet(s:Set N, n:N):Set N ==
l: List N := [ 0 ]
for e in parts s repeat
if (ee := (e exquo n)$N) case N then l := cons(ee::N,l)
set(l)
-- Beauzamy-Trevisan-Wang FACTOR, see [1] with some refinements
-- and some differences. f is assumed to be primitive, square-free
-- and with positive leading coefficient. If pdecomp is true then
-- look for a functional decomposition of f.
btwFactor(f:UP,d:Set N,r:N,pdecomp:Boolean):List UP ==
df := degree f
not (max(d) = df) => error "btwFact: Bad arguments"
reverse?: Boolean := false
negativelc?: Boolean := false
(d = set [0,df]) => [ f ]
if abs(coefficient(f,0))<abs(leadingCoefficient(f)) then
f := reverse f
reverse? := true
brillhartIrreducible? f or
(useeisensteincriterion => eisensteinIrreducible?(f) ; false) =>
if reverse? then [ reverse f ] else [ f ]
if leadingCoefficient(f)<0 then
f := -f
negativelc? := true
cf: Union(LR,"failed")
if pdecomp and tryfunctionaldecomposition then
cf := monicDecomposeIfCan f
else
cf := "failed"
if cf case "failed" then
m := modularFactor f
zero? (cprime := m.prime) =>
if reverse? then
if negativelc? then return [ -reverse f ]
else return [ reverse f ]
else if negativelc? then return [ -f ]
else return [ f ]
if noLinearFactor? f then d := remove(1,d)
lc := leadingCoefficient f
f0 := coefficient(f,0)
b: P := (2*lc*singleFactorBound(f,r)) :: P -- LC algorithm
lm := HenselLift(f,m.factors,cprime,b)
lf := lm.plist
pk: P := (lm.modulo)::P
if ground? first lf then lf := rest lf
-- in case exact factorisation has been reached by HenselLift
-- before coefficient bound
if not pk < b then lf := completeFactor(f,lf,cprime,pk,r,d)
else
lrf := cf::LR
dh := degree lrf.right
lg := btwFactor(lrf.left,divideSet(d,dh),2,true)
lf: List UP := empty()
for i in 1..#lg repeat
g := lg.i
dgh := (degree g)*dh
df := subtractIfCan(df,dgh)::N
lfg := btwFactor(g(lrf.right),
select(x+->x <= dgh,d),max(2,r-df)::N,false)
lf := append(lf,lfg)
r := max(2,r-#lfg)::N
if reverse? then lf := [ reverse(fact) for fact in lf ]
for i in 1..#lf repeat
if leadingCoefficient(lf.i)<0 then lf.i := -lf.i
-- because we assume f with positive leading coefficient
lf
makeFR(flist:FinalFact):Factored UP ==
ctp := factor flist.contp
fflist: List FFE := empty()
for ff in flist.factors repeat
fflist := cons(["prime", ff.irr, ff.pow]$FFE, fflist)
for fc in factorList ctp repeat
fflist := cons([fc.flg, fc.fctr::UP, fc.xpnt]$FFE, fflist)
makeFR(unit(ctp)::UP, fflist)
import IntegerRoots(Z)
-- local function, factorizes a quadratic polynomial
quadratic(p:UP):List UP ==
a := leadingCoefficient p
b := coefficient(p,1)
d := b**2-4*a*coefficient(p,0)
r := perfectSqrt(d)
r case "failed" => [p]
b := b+(r::Z)
a := 2*a
d := gcd(a,b)
if not (d = 1) then
a := a quo d
b := b quo d
f: UP := monomial(a,1)+monomial(b,0)
cons(f,[(p exquo f)::UP])
isPowerOf2(n:Z): Boolean ==
n = 1 => true
qr: Record(quotient: Z, remainder: Z) := divide(n,2)
qr.remainder = 1 => false
isPowerOf2 qr.quotient
subMinusX(supPol: SUPZ): UP ==
minusX: SUPZ := monomial(-1,1)$SUPZ
unmakeSUP(elt(supPol,minusX)$SUPZ)
henselFact(f:UP, sqf:Boolean):FinalFact ==
factorlist: List(ParFact) := empty()
-- make m primitive
c: Z := content f
f := (f exquo c)::UP
-- make the leading coefficient positive
if leadingCoefficient f < 0 then
c := -c
f := -f
-- is x**d factor of f
if (d := minimumDegree f) > 0 then
f := monicDivide(f,monomial(1,d)).quotient
factorlist := [[monomial(1,1),d]$ParFact]
d := degree f
-- is f constant?
zero? d => [c,factorlist]$FinalFact
-- is f linear?
(d = 1) => [c,cons([f,1]$ParFact,factorlist)]$FinalFact
lcPol: UP := leadingCoefficient(f) :: UP
-- is f cyclotomic (x**n - 1)?
-lcPol = reductum(f) => -- if true, both will = 1
for fac in map(z+->unmakeSUP(z)$UP,
cyclotomicDecomposition(d)$CYC)$ListFunctions2(SUPZ,UP) repeat
factorlist := cons([fac,1]$ParFact,factorlist)
[c,factorlist]$FinalFact
-- is f odd cyclotomic (x**(2*n+1) + 1)?
odd?(d) and (lcPol = reductum(f)) =>
for sfac in cyclotomicDecomposition(d)$CYC repeat
fac := subMinusX sfac
if leadingCoefficient fac < 0 then fac := -fac
factorlist := cons([fac,1]$ParFact,factorlist)
[c,factorlist]$FinalFact
-- is the poly of the form x**n + 1 with n a power of 2?
-- if so, then irreducible
isPowerOf2(d) and (lcPol = reductum(f)) =>
factorlist := cons([f,1]$ParFact,factorlist)
[c,factorlist]$FinalFact
-- other special cases to implement...
-- f is square-free :
sqf => [c, append([[pf,1]$ParFact for pf in henselfact(f,true)],
factorlist)]$FinalFact
-- f is not square-free :
sqfflist := factors squareFree f
for sqfr in sqfflist repeat
mult := sqfr.exponent
sqff := sqfr.factor
d := degree sqff
(d = 1) => factorlist := cons([sqff,mult]$ParFact,factorlist)
d=2 =>
factorlist := append([[pf,mult]$ParFact for pf in quadratic(sqff)],
factorlist)
factorlist := append([[pf,mult]$ParFact for pf in
henselfact(sqff,true)],factorlist)
[c,factorlist]$FinalFact
btwFact(f:UP, sqf:Boolean, fd:Set N, r:N):FinalFact ==
d := degree f
not(max(fd)=d) => error "btwFact: Bad arguments"
factorlist: List(ParFact) := empty()
-- make m primitive
c: Z := content f
f := (f exquo c)::UP
-- make the leading coefficient positive
if leadingCoefficient f < 0 then
c := -c
f := -f
-- is x**d factor of f
if (maxd := minimumDegree f) > 0 then
f := monicDivide(f,monomial(1,maxd)).quotient
factorlist := [[monomial(1,1),maxd]$ParFact]
r := max(2,r-maxd)::N
d := subtractIfCan(d,maxd)::N
fd := select(x+->x <= d,fd)
-- is f constant?
zero? d => [c,factorlist]$FinalFact
-- is f linear?
(d = 1) => [c,cons([f,1]$ParFact,factorlist)]$FinalFact
lcPol: UP := leadingCoefficient(f) :: UP
-- is f cyclotomic (x**n - 1)?
-lcPol = reductum(f) => -- if true, both will = 1
for fac in map(z+->unmakeSUP(z)$UP,
cyclotomicDecomposition(d)$CYC)$ListFunctions2(SUPZ,UP) repeat
factorlist := cons([fac,1]$ParFact,factorlist)
[c,factorlist]$FinalFact
-- is f odd cyclotomic (x**(2*n+1) + 1)?
odd?(d) and (lcPol = reductum(f)) =>
for sfac in cyclotomicDecomposition(d)$CYC repeat
fac := subMinusX sfac
if leadingCoefficient fac < 0 then fac := -fac
factorlist := cons([fac,1]$ParFact,factorlist)
[c,factorlist]$FinalFact
-- is the poly of the form x**n + 1 with n a power of 2?
-- if so, then irreducible
isPowerOf2(d) and (lcPol = reductum(f)) =>
factorlist := cons([f,1]$ParFact,factorlist)
[c,factorlist]$FinalFact
-- other special cases to implement...
-- f is square-free :
sqf => [c, append([[pf,1]$ParFact for pf in btwFactor(f,fd,r,true)],
factorlist)]$FinalFact
-- f is not square-free :
sqfflist := factors squareFree(f)
if ((#(sqfflist)) = 1) then -- indeed f was a power of a square-free
r := max(r quo ((first sqfflist).exponent),2)::N
else
r := 2
for sqfr in sqfflist repeat
mult := sqfr.exponent
sqff := sqfr.factor
d := degree sqff
(d = 1) =>
factorlist := cons([sqff,mult]$ParFact,factorlist)
maxd := (max(fd)-mult)::N
fd := select(x+->x <= maxd,fd)
d=2 =>
factorlist := append([[pf,mult]$ParFact for pf in quadratic(sqff)],
factorlist)
maxd := (max(fd)-2*mult)::N
fd := select(x+->x <= maxd,fd)
factorlist := append([[pf,mult]$ParFact for pf in
btwFactor(sqff,select(x+->x <= d,fd),r,true)],factorlist)
maxd := (max(fd)-d*mult)::N
fd := select(x+->x <= maxd,fd)
[c,factorlist]$FinalFact
factor(f:UP):Factored UP ==
makeFR
usesinglefactorbound => btwFact(f,false,fullSet(degree f),2)
henselFact(f,false)
-- local function, returns true if the sum of the elements of the list
-- is not the degree.
errorsum?(d:N,ld:List N):Boolean == not (d = +/ld)
-- local function, turns list of degrees into a Set
makeSet(ld:List N):Set N ==
s := set [0]
for d in ld repeat s := union(s,shiftSet(s,d))
s
factor(f:UP,ld:List N,r:N):Factored UP ==
errorsum?(degree f,ld) => error "factor: Bad arguments"
makeFR btwFact(f,false,makeSet(ld),r)
factor(f:UP,r:N):Factored UP == makeFR btwFact(f,false,fullSet(degree f),r)
factor(f:UP,ld:List N):Factored UP == factor(f,ld,2)
factor(f:UP,d:N,r:N):Factored UP ==
n := (degree f) exquo d
n case "failed" => error "factor: Bad arguments"
factor(f,new(n::N,d)$List(N),r)
factorSquareFree(f:UP):Factored UP ==
makeFR
usesinglefactorbound => btwFact(f,true,fullSet(degree f),2)
henselFact(f,true)
factorSquareFree(f:UP,ld:List(N),r:N):Factored UP ==
errorsum?(degree f,ld) => error "factorSquareFree: Bad arguments"
makeFR btwFact(f,true,makeSet(ld),r)
factorSquareFree(f:UP,r:N):Factored UP ==
makeFR btwFact(f,true,fullSet(degree f),r)
factorSquareFree(f:UP,ld:List N):Factored UP == factorSquareFree(f,ld,2)
factorSquareFree(f:UP,d:N,r:N):Factored UP ==
n := (degree f) exquo d
n case "failed" => error "factorSquareFree: Bad arguments"
factorSquareFree(f,new(n::N,d)$List(N),r)
factorOfDegree(d:P,p:UP,ld:List N,r:N,sqf:Boolean):Union(UP,"failed") ==
dp := degree p
errorsum?(dp,ld) => error "factorOfDegree: Bad arguments"
((d::N) = 1) and noLinearFactor?(p) => "failed"
lf := btwFact(p,sqf,makeSet(ld),r).factors
for f in lf repeat
degree(f.irr)=d => return f.irr
"failed"
factorOfDegree(d:P,p:UP,ld:List N,r:N):Union(UP,"failed") ==
factorOfDegree(d,p,ld,r,false)
factorOfDegree(d:P,p:UP,r:N):Union(UP,"failed") ==
factorOfDegree(d,p,new(degree p,1)$List(N),r,false)
factorOfDegree(d:P,p:UP,ld:List N):Union(UP,"failed") ==
factorOfDegree(d,p,ld,2,false)
factorOfDegree(d:P,p:UP):Union(UP,"failed") ==
factorOfDegree(d,p,new(degree p,1)$List(N),2,false)
|