This file is indexed.

/usr/share/axiom-20170501/src/algebra/GALFACTU.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
)abbrev package GALFACTU GaloisGroupFactorizationUtilities
++ Author: Frederic Lehobey
++ Date Created: 30 June 1994
++ Date Last Updated: 19 October 1995
++ References: 
++ [1] Bernard Beauzamy, Products of polynomials and a priori estimates for
++ coefficients in polynomial decompositions: a sharp result,
++ J. Symbolic Computation (1992) 13, 463-472
++ [2] David W. Boyd, Bounds for the Height of a Factor of a Polynomial in
++ Terms of Bombieri's Norms: I. The Largest Factor,
++ J. Symbolic Computation (1993) 16, 115-130
++ [3] David W. Boyd, Bounds for the Height of a Factor of a Polynomial in
++ Terms of Bombieri's Norms: II. The Smallest Factor,
++ J. Symbolic Computation (1993) 16, 131-145
++ [4] Maurice Mignotte, Some Useful Bounds,
++ Computing, Suppl. 4, 259-263 (1982), Springer-Verlag
++ [5] Donald E. Knuth, The Art of Computer Programming, Vol. 2, (Seminumerical
++ Algorithms) 1st edition, 2nd printing, Addison-Wesley 1971, p. 397-398
++ [6] Bernard Beauzamy, Vilmar Trevisan and Paul S. Wang, Polynomial 
++ Factorization: Sharp Bounds, Efficient Algorithms,
++ J. Symbolic Computation (1993) 15, 393-413
++ [7] Augustin-Lux Cauchy, Exercices de Math\'ematiques Quatri\`eme Ann\'ee.
++ De Bure Fr\`eres, Paris 1829 (reprinted Oeuvres, II S\'erie, Tome IX,
++ Gauthier-Villars, Paris, 1891).
++ Description: 
++ \spadtype{GaloisGroupFactorizationUtilities} provides functions
++ that will be used by the factorizer.

GaloisGroupFactorizationUtilities(R,UP,F) : SIG == CODE where
  R : Ring
  UP : UnivariatePolynomialCategory R
  F : Join(FloatingPointSystem,RetractableTo(R),Field,
   TranscendentalFunctionCategory,ElementaryFunctionCategory)

  N ==> NonNegativeInteger
  P ==> PositiveInteger
  Z ==> Integer
 
  SIG ==> with

    beauzamyBound : UP -> Z -- See [1]
      ++ beauzamyBound(p) returns a bound on the larger coefficient of any
      ++ factor of p.

    bombieriNorm : UP -> F -- See [1]
      ++ bombieriNorm(p) returns quadratic Bombieri's norm of p.

    bombieriNorm : (UP,P) -> F -- See [2] and [3]
      ++ bombieriNorm(p,n) returns the nth Bombieri's norm of p.

    rootBound : UP -> Z -- See [4] and [5]
      ++ rootBound(p) returns a bound on the largest norm of the complex roots
      ++ of p.

    singleFactorBound : (UP,N) -> Z -- See [6]
      ++ singleFactorBound(p,r) returns a bound on the infinite norm of
      ++ the factor of p with smallest Bombieri's norm. r is a lower bound
      ++ for the number of factors of p. p shall be of degree higher or equal
      ++ to 2.

    singleFactorBound : UP -> Z -- See [6]
      ++ singleFactorBound(p,r) returns a bound on the infinite norm of
      ++ the factor of p with smallest Bombieri's norm. p shall be of degree
      ++ higher or equal to 2.

    norm : (UP,P) -> F
      ++ norm(f,p) returns the lp norm of the polynomial f.

    quadraticNorm : UP -> F
      ++ quadraticNorm(f) returns the l2 norm of the polynomial f.

    infinityNorm : UP -> F
      ++ infinityNorm(f) returns the maximal absolute value of the coefficients
      ++ of the polynomial f.

    height : UP -> F
      ++ height(p) returns the maximal absolute value of the coefficients of
      ++ the polynomial p.

    length : UP -> F
      ++ length(p) returns the sum of the absolute values of the coefficients
      ++ of the polynomial p.

  CODE ==> add

    import GaloisGroupUtilities(F)

    height(p:UP):F == infinityNorm(p)

    length(p:UP):F == norm(p,1)

    norm(f:UP,p:P):F ==
      n : F := 0
      for c in coefficients f repeat
        n := n+abs(c::F)**p
      nthRoot(n,p::N)

    quadraticNorm(f:UP):F == norm(f,2)

    infinityNorm(f:UP):F ==
      n : F := 0
      for c in coefficients f repeat
        n := max(n,c::F)
      n

    singleFactorBound(p:UP,r:N):Z == -- See [6]
      n : N := degree p
      r := max(2,r)
      n < r => error "singleFactorBound: Bad arguments."
      nf : F := n :: F
      num : F := nthRoot(bombieriNorm(p),r)
      if F has Gamma: F -> F then
        num := num*nthRoot(Gamma(nf+1$F),2*r)
        den : F := Gamma(nf/((2*r)::F)+1$F)
      else
        num := num*(2::F)**(5/8+n/2)*exp(1$F/(4*nf))
        den : F := (pi()$F*nf)**(3/8)
      safeFloor( num/den )

    singleFactorBound(p:UP):Z == singleFactorBound(p,2) -- See [6]

    rootBound(p:UP):Z == -- See [4] and [5]
      n := degree p
      zero? n => 0
      lc := abs(leadingCoefficient(p)::F)
      b1 : F := 0 -- Mignotte
      b2 : F := 0 -- Knuth
      b3 : F := 0 -- Zassenhaus in [5]
      b4 : F := 0 -- Cauchy in [7]
      c : F := 0
      cl : F := 0
      for i in 1..n repeat
        c := abs(coefficient(p,(n-i)::N)::F)
        b1 := max(b1,c)
        cl := c/lc
        b2 := max(b2,nthRoot(cl,i))
        b3 := max(b3,nthRoot(cl/pascalTriangle(n,i),i))
        b4 := max(b4,nthRoot(n*cl,i))
      min(1+safeCeiling(b1/lc),min(safeCeiling(2*b2),min(safeCeiling(b3/
       (nthRoot(2::F,n)-1)),safeCeiling(b4))))

    beauzamyBound(f:UP):Z == -- See [1]
      d := degree f
      zero? d => safeFloor bombieriNorm f
      safeFloor( (bombieriNorm(f)*(3::F)**(3/4+d/2))/
       (2*sqrt(pi()$F*(d::F))) )

    bombieriNorm(f:UP,p:P):F == -- See [2] and [3]
      d := degree f
      b := abs(coefficient(f,0)::F)
      if zero? d then return b
       else b := b**p
      b := b+abs(leadingCoefficient(f)::F)**p
      dd := (d-1) quo 2
      for i in 1..dd repeat
        b := b+(abs(coefficient(f,i)::F)**p+abs(coefficient(f,(d-i)::N)::F)**p)
         /pascalTriangle(d,i)
      if even? d then
        dd := dd+1
        b := b+abs(coefficient(f, dd::N)::F)**p/pascalTriangle(d,dd)
      nthRoot(b,p::N)

    bombieriNorm(f:UP):F == bombieriNorm(f,2) -- See [1]