/usr/share/axiom-20170501/src/algebra/GALFACTU.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | )abbrev package GALFACTU GaloisGroupFactorizationUtilities
++ Author: Frederic Lehobey
++ Date Created: 30 June 1994
++ Date Last Updated: 19 October 1995
++ References:
++ [1] Bernard Beauzamy, Products of polynomials and a priori estimates for
++ coefficients in polynomial decompositions: a sharp result,
++ J. Symbolic Computation (1992) 13, 463-472
++ [2] David W. Boyd, Bounds for the Height of a Factor of a Polynomial in
++ Terms of Bombieri's Norms: I. The Largest Factor,
++ J. Symbolic Computation (1993) 16, 115-130
++ [3] David W. Boyd, Bounds for the Height of a Factor of a Polynomial in
++ Terms of Bombieri's Norms: II. The Smallest Factor,
++ J. Symbolic Computation (1993) 16, 131-145
++ [4] Maurice Mignotte, Some Useful Bounds,
++ Computing, Suppl. 4, 259-263 (1982), Springer-Verlag
++ [5] Donald E. Knuth, The Art of Computer Programming, Vol. 2, (Seminumerical
++ Algorithms) 1st edition, 2nd printing, Addison-Wesley 1971, p. 397-398
++ [6] Bernard Beauzamy, Vilmar Trevisan and Paul S. Wang, Polynomial
++ Factorization: Sharp Bounds, Efficient Algorithms,
++ J. Symbolic Computation (1993) 15, 393-413
++ [7] Augustin-Lux Cauchy, Exercices de Math\'ematiques Quatri\`eme Ann\'ee.
++ De Bure Fr\`eres, Paris 1829 (reprinted Oeuvres, II S\'erie, Tome IX,
++ Gauthier-Villars, Paris, 1891).
++ Description:
++ \spadtype{GaloisGroupFactorizationUtilities} provides functions
++ that will be used by the factorizer.
GaloisGroupFactorizationUtilities(R,UP,F) : SIG == CODE where
R : Ring
UP : UnivariatePolynomialCategory R
F : Join(FloatingPointSystem,RetractableTo(R),Field,
TranscendentalFunctionCategory,ElementaryFunctionCategory)
N ==> NonNegativeInteger
P ==> PositiveInteger
Z ==> Integer
SIG ==> with
beauzamyBound : UP -> Z -- See [1]
++ beauzamyBound(p) returns a bound on the larger coefficient of any
++ factor of p.
bombieriNorm : UP -> F -- See [1]
++ bombieriNorm(p) returns quadratic Bombieri's norm of p.
bombieriNorm : (UP,P) -> F -- See [2] and [3]
++ bombieriNorm(p,n) returns the nth Bombieri's norm of p.
rootBound : UP -> Z -- See [4] and [5]
++ rootBound(p) returns a bound on the largest norm of the complex roots
++ of p.
singleFactorBound : (UP,N) -> Z -- See [6]
++ singleFactorBound(p,r) returns a bound on the infinite norm of
++ the factor of p with smallest Bombieri's norm. r is a lower bound
++ for the number of factors of p. p shall be of degree higher or equal
++ to 2.
singleFactorBound : UP -> Z -- See [6]
++ singleFactorBound(p,r) returns a bound on the infinite norm of
++ the factor of p with smallest Bombieri's norm. p shall be of degree
++ higher or equal to 2.
norm : (UP,P) -> F
++ norm(f,p) returns the lp norm of the polynomial f.
quadraticNorm : UP -> F
++ quadraticNorm(f) returns the l2 norm of the polynomial f.
infinityNorm : UP -> F
++ infinityNorm(f) returns the maximal absolute value of the coefficients
++ of the polynomial f.
height : UP -> F
++ height(p) returns the maximal absolute value of the coefficients of
++ the polynomial p.
length : UP -> F
++ length(p) returns the sum of the absolute values of the coefficients
++ of the polynomial p.
CODE ==> add
import GaloisGroupUtilities(F)
height(p:UP):F == infinityNorm(p)
length(p:UP):F == norm(p,1)
norm(f:UP,p:P):F ==
n : F := 0
for c in coefficients f repeat
n := n+abs(c::F)**p
nthRoot(n,p::N)
quadraticNorm(f:UP):F == norm(f,2)
infinityNorm(f:UP):F ==
n : F := 0
for c in coefficients f repeat
n := max(n,c::F)
n
singleFactorBound(p:UP,r:N):Z == -- See [6]
n : N := degree p
r := max(2,r)
n < r => error "singleFactorBound: Bad arguments."
nf : F := n :: F
num : F := nthRoot(bombieriNorm(p),r)
if F has Gamma: F -> F then
num := num*nthRoot(Gamma(nf+1$F),2*r)
den : F := Gamma(nf/((2*r)::F)+1$F)
else
num := num*(2::F)**(5/8+n/2)*exp(1$F/(4*nf))
den : F := (pi()$F*nf)**(3/8)
safeFloor( num/den )
singleFactorBound(p:UP):Z == singleFactorBound(p,2) -- See [6]
rootBound(p:UP):Z == -- See [4] and [5]
n := degree p
zero? n => 0
lc := abs(leadingCoefficient(p)::F)
b1 : F := 0 -- Mignotte
b2 : F := 0 -- Knuth
b3 : F := 0 -- Zassenhaus in [5]
b4 : F := 0 -- Cauchy in [7]
c : F := 0
cl : F := 0
for i in 1..n repeat
c := abs(coefficient(p,(n-i)::N)::F)
b1 := max(b1,c)
cl := c/lc
b2 := max(b2,nthRoot(cl,i))
b3 := max(b3,nthRoot(cl/pascalTriangle(n,i),i))
b4 := max(b4,nthRoot(n*cl,i))
min(1+safeCeiling(b1/lc),min(safeCeiling(2*b2),min(safeCeiling(b3/
(nthRoot(2::F,n)-1)),safeCeiling(b4))))
beauzamyBound(f:UP):Z == -- See [1]
d := degree f
zero? d => safeFloor bombieriNorm f
safeFloor( (bombieriNorm(f)*(3::F)**(3/4+d/2))/
(2*sqrt(pi()$F*(d::F))) )
bombieriNorm(f:UP,p:P):F == -- See [2] and [3]
d := degree f
b := abs(coefficient(f,0)::F)
if zero? d then return b
else b := b**p
b := b+abs(leadingCoefficient(f)::F)**p
dd := (d-1) quo 2
for i in 1..dd repeat
b := b+(abs(coefficient(f,i)::F)**p+abs(coefficient(f,(d-i)::N)::F)**p)
/pascalTriangle(d,i)
if even? d then
dd := dd+1
b := b+abs(coefficient(f, dd::N)::F)**p/pascalTriangle(d,dd)
nthRoot(b,p::N)
bombieriNorm(f:UP):F == bombieriNorm(f,2) -- See [1]
|