This file is indexed.

/usr/share/axiom-20170501/src/algebra/GBEUCLID.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
)abbrev package GBEUCLID EuclideanGroebnerBasisPackage
++ Authors: Gebauer, Moeller
++ Date Created: 12-1-86
++ Date Last Updated: 2-28-91
++ References:
++ Normxx Notes 13: How to Compute a Groebner Basis
++ Description: 
++ \spadtype{EuclideanGroebnerBasisPackage} computes groebner
++ bases for polynomial ideals over euclidean domains.
++ The basic computation provides
++ a distinguished set of generators for these ideals.
++ This basis allows an easy test for membership: the operation
++ \spadfun{euclideanNormalForm} returns zero on ideal members. The string 
++ "info" and "redcrit" can be given as additional args to provide 
++ incremental information during the computation. If "info" is given,
++ a computational summary is given for each s-polynomial. If "redcrit" 
++ is given, the reduced critical pairs are printed. The term ordering
++ is determined by the polynomial type used. Suggested types include
++ \spadtype{DistributedMultivariatePolynomial},
++ \spadtype{HomogeneousDistributedMultivariatePolynomial},
++ \spadtype{GeneralDistributedMultivariatePolynomial}.
 
EuclideanGroebnerBasisPackage(Dom, Expon, VarSet, Dpol) : SIG == CODE where
  Dom : EuclideanDomain
  Expon : OrderedAbelianMonoidSup
  VarSet : OrderedSet
  Dpol : PolynomialCategory(Dom, Expon, VarSet)
 
  SIG ==> with
 
     euclideanNormalForm : (Dpol, List(Dpol) )  ->  Dpol
       ++ euclideanNormalForm(poly,gb) reduces the polynomial poly modulo the
       ++ precomputed groebner basis gb giving a canonical representative
       ++ of the residue class.

     euclideanGroebner : List(Dpol) -> List(Dpol)
       ++ euclideanGroebner(lp) computes a groebner basis for a polynomial 
       ++ ideal over a euclidean domain generated by the list of polys lp.
       ++
       ++X a1:DMP([y,x],INT):= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1)
       ++X a2:DMP([y,x],INT):= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1)
       ++X a3:DMP([y,x],INT):= (3*x**3 + 2*x**2) + y*(x**3 + x**2)
       ++X an:=[a1,a2,a3]
       ++X euclideanGroebner(an)

     euclideanGroebner : (List(Dpol), String) -> List(Dpol)
       ++ euclideanGroebner(lp, infoflag) computes a groebner basis 
       ++ for a polynomial ideal over a euclidean domain
       ++ generated by the list of polynomials lp.
       ++ During computation, additional information is printed out
       ++ if infoflag is given as 
       ++ either "info" (for summary information) or
       ++ "redcrit" (for reduced critical pairs)
       ++
       ++X a1:DMP([y,x],INT):= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1)
       ++X a2:DMP([y,x],INT):= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1)
       ++X a3:DMP([y,x],INT):= (3*x**3 + 2*x**2) + y*(x**3 + x**2)
       ++X an:=[a1,a2,a3]
       ++X euclideanGroebner(an,"redcrit")
       ++X euclideanGroebner(an,"info")

     euclideanGroebner : (List(Dpol), String, String ) -> List(Dpol)
       ++ euclideanGroebner(lp, "info", "redcrit") computes a groebner basis
       ++ for a polynomial ideal generated by the list of polynomials lp.
       ++ If the second argument is "info", 
       ++ a summary is given of the critical pairs.
       ++ If the third argument is "redcrit", critical pairs are printed.
       ++
       ++X a1:DMP([y,x],INT):= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1)
       ++X a2:DMP([y,x],INT):= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1)
       ++X a3:DMP([y,x],INT):= (3*x**3 + 2*x**2) + y*(x**3 + x**2)
       ++X an:=[a1,a2,a3]
       ++X euclideanGroebner(an,"info","redcrit")

  CODE ==> add

   Ex ==> OutputForm
   lc ==> leadingCoefficient
   red ==> reductum

   import OutputForm
 
   ------  Definition list of critPair
   ------  lcmfij is now lcm of headterm of poli and polj
   ------  lcmcij is now lcm of of lc poli and lc polj
 
   critPair ==>Record(lcmfij: Expon, lcmcij: Dom, poli:Dpol, polj: Dpol )
   Prinp    ==> Record( ci:Dpol,tci:Integer,cj:Dpol,tcj:Integer,c:Dpol,
                tc:Integer,rc:Dpol,trc:Integer,tH:Integer,tD:Integer)
 
   ------  Definition of intermediate functions
 
   strongGbasis: (List(Dpol), Integer, Integer) -> List(Dpol)
   eminGbasis: List(Dpol) -> List(Dpol)
   ecritT: (critPair ) -> Boolean
   ecritM: (Expon, Dom, Expon, Dom) -> Boolean
   ecritB: (Expon, Dom, Expon, Dom, Expon, Dom) -> Boolean
   ecrithinH: (Dpol, List(Dpol)) -> Boolean
   ecritBonD: (Dpol, List(critPair)) -> List(critPair)
   ecritMTondd1:(List(critPair)) -> List(critPair)
   ecritMondd1:(Expon, Dom, List(critPair)) -> List(critPair)
   crithdelH: (Dpol, List(Dpol)) -> List(Dpol)
   eupdatF: (Dpol, List(Dpol) ) -> List(Dpol)
   updatH: (Dpol, List(Dpol), List(Dpol), List(Dpol) ) -> List(Dpol)
   sortin: (Dpol, List(Dpol) ) -> List(Dpol)
   eRed: (Dpol, List(Dpol), List(Dpol) )  ->  Dpol
   ecredPol: (Dpol, List(Dpol) ) -> Dpol
   esPol: (critPair) -> Dpol
   updatD: (List(critPair), List(critPair)) -> List(critPair)
   lepol: Dpol -> Integer
   prinshINFO : Dpol -> Void
   prindINFO: (critPair, Dpol, Dpol,Integer,Integer,Integer) -> Integer
   prinpolINFO: List(Dpol) -> Void
   prinb: Integer -> Void
 
   ------    MAIN ALGORITHM GROEBNER ------------------------
   euclideanGroebner( Pol: List(Dpol) ) ==
     eminGbasis(strongGbasis(Pol,0,0))
 
   euclideanGroebner( Pol: List(Dpol), xx1: String) ==
     xx1 = "redcrit" =>
       eminGbasis(strongGbasis(Pol,1,0))
     xx1 = "info" =>
       eminGbasis(strongGbasis(Pol,2,1))
     print("   "::Ex)
     print("WARNING: options are - redcrit and/or info - "::Ex)
     print("         you didn't type them correct"::Ex)
     print("         please try again"::Ex)
     print("   "::Ex)
     []
 
   euclideanGroebner( Pol: List(Dpol), xx1: String, xx2: String) ==
     (xx1 = "redcrit" and xx2 = "info") or
      (xx1 = "info" and xx2 = "redcrit")   =>
       eminGbasis(strongGbasis(Pol,1,1))
     xx1 = "redcrit" and xx2 = "redcrit" =>
       eminGbasis(strongGbasis(Pol,1,0))
     xx1 = "info" and xx2 = "info" =>
       eminGbasis(strongGbasis(Pol,2,1))
     print("   "::Ex)
     print("WARNING:  options are - redcrit and/or info - "::Ex)
     print("          you didn't type them correct"::Ex)
     print("          please try again "::Ex)
     print("   "::Ex)
     []
 
   ------    calculate basis
 
   strongGbasis(Pol: List(Dpol),xx1: Integer, xx2: Integer ) ==
     dd1, D : List(critPair)
 
     ---------   create D and Pol
 
     Pol1:= sort((z1:Dpol,z2:Dpol):Boolean +-> (degree z1 > degree z2) or
                    ((degree z1 = degree z2 ) and
                       sizeLess?(leadingCoefficient z2,leadingCoefficient z1)),
                 Pol)
     Pol:= [first(Pol1)]
     H:= Pol
     Pol1:= rest(Pol1)
     D:= nil
     while ^null Pol1 repeat
        h:= first(Pol1)
        Pol1:= rest(Pol1)
        en:= degree(h)
        lch:= lc h
        dd1:= 
         [[sup(degree(x), en), lcm(leadingCoefficient x, lch), x, h]$critPair
            for x in Pol]
        D:= updatD(
             ecritMTondd1(
              sort(
               (z1:critPair,z2:critPair):Boolean+->
                (z1.lcmfij < z2.lcmfij) or
                 (( z1.lcmfij = z2.lcmfij ) and
                   ( sizeLess?(z1.lcmcij,z2.lcmcij)) ), dd1)), 
                    ecritBonD(h,D))
        Pol:= cons(h, eupdatF(h, Pol))
        ((en = degree(first(H))) and 
          (leadingCoefficient(h) = leadingCoefficient(first(H)) ) ) =>
              " go to top of while "
        H:= updatH(h,H,crithdelH(h,H),[h])
        H:= sort((z1,z2) +-> (degree z1 > degree z2) or
                 ((degree z1 = degree z2 ) and
                  sizeLess?(leadingCoefficient z2,leadingCoefficient z1)), H)
     D:= sort((z1,z2) +-> (z1.lcmfij < z2.lcmfij) or
              (( z1.lcmfij = z2.lcmfij ) and
               ( sizeLess?(z1.lcmcij,z2.lcmcij)) ) ,D)
     xx:= xx2
 
     --------  loop
 
     while ^null D repeat
         D0:= first D
         ep:=esPol(D0)
         D:= rest(D)
         eh:= ecredPol(eRed(ep,H,H),H)
         if xx1 = 1 then
               prinshINFO(eh)
         eh = 0 =>
              if xx2 = 1 then
                  ala:= prindINFO(D0,ep,eh,#H, #D, xx)
                  xx:= 2
              " go to top of while "
         eh := unitCanonical eh
         e:= degree(eh)
         leh:= lc eh
         dd1:= 
          [[sup(degree(x), e), lcm(leadingCoefficient x, leh), x, eh]$critPair
            for x in Pol]
         D:= updatD(
              ecritMTondd1(
               sort((z1,z2) +-> (z1.lcmfij < z2.lcmfij) or 
                    (( z1.lcmfij = z2.lcmfij ) and
                     ( sizeLess?(z1.lcmcij,z2.lcmcij)) ), dd1)),
                       ecritBonD(eh,D))
         Pol:= cons(eh,eupdatF(eh,Pol))
         ^ecrithinH(eh,H) or
           ((e = degree(first(H))) and 
             (leadingCoefficient(eh) = leadingCoefficient(first(H)) ) ) =>
              if xx2 = 1 then
                  ala:= prindINFO(D0,ep,eh,#H, #D, xx)
                  xx:= 2
              " go to top of while "
         H:= updatH(eh,H,crithdelH(eh,H),[eh])
         H:= sort((z1,z2)+-> (degree z1 > degree z2) or
             ((degree z1 = degree z2 ) and
                 sizeLess?(leadingCoefficient z2,leadingCoefficient z1)), H)
         if xx2 = 1 then
           ala:= prindINFO(D0,ep,eh,#H, #D, xx)
           xx:= 2
           " go to top of while "
     if xx2 = 1 then
       prinpolINFO(Pol)
       print("    THE GROEBNER BASIS over EUCLIDEAN DOMAIN"::Ex)
     if xx1 = 1 and xx2 ^= 1 then
       print("    THE GROEBNER BASIS over EUCLIDEAN DOMAIN"::Ex)
     H
 
             --------------------------------------
 
             --- erase multiple of e in D2 using crit M
 
   ecritMondd1(e: Expon, c: Dom, D2: List(critPair))==
      null D2 => nil
      x:= first(D2)
      ecritM(e,c, x.lcmfij, lcm(leadingCoefficient(x.poli), 
             leadingCoefficient(x.polj)))
         => ecritMondd1(e, c, rest(D2))
      cons(x, ecritMondd1(e, c, rest(D2)))
 
            -------------------------------
 
   ecredPol(h: Dpol, F: List(Dpol) ) ==
        h0:Dpol:= 0
        null F => h
        while h ^= 0 repeat
           h0:= h0 + monomial(leadingCoefficient(h),degree(h))
           h:= eRed(red(h), F, F)
        h0
             ----------------------------
 
             --- reduce dd1 using crit T and crit M
 
   ecritMTondd1(dd1: List(critPair))==
           null dd1 => nil
           f1:= first(dd1)
           s1:= #(dd1)
           cT1:= ecritT(f1)
           s1= 1 and cT1 => nil
           s1= 1 => dd1
           e1:= f1.lcmfij
           r1:= rest(dd1)
           f2:= first(r1)
           e1 = f2.lcmfij and f1.lcmcij = f2.lcmcij =>
              cT1 =>   ecritMTondd1(cons(f1, rest(r1)))
              ecritMTondd1(r1)
           dd1 := ecritMondd1(e1, f1.lcmcij, r1)
           cT1 => ecritMTondd1(dd1)
           cons(f1, ecritMTondd1(dd1))
 
             -----------------------------
 
             --- erase elements in D fullfilling crit B
 
   ecritBonD(h:Dpol, D: List(critPair))==
         null D => nil
         x:= first(D)
         x1:= x.poli
         x2:= x.polj
         ecritB(degree(h), leadingCoefficient(h), 
                degree(x1),leadingCoefficient(x1),
                degree(x2),leadingCoefficient(x2)) =>
           ecritBonD(h, rest(D))
         cons(x, ecritBonD(h, rest(D)))
 
             -----------------------------
 
             --- concat F and h and erase multiples of h in F
 
   eupdatF(h: Dpol, F: List(Dpol)) ==
       null F => nil
       f1:= first(F)
       ecritM(degree h,leadingCoefficient(h), degree f1,leadingCoefficient(f1))
           => eupdatF(h, rest(F))
       cons(f1, eupdatF(h, rest(F)))
 
             -----------------------------
             --- concat H and h and erase multiples of h in H
 
   updatH(h: Dpol, H: List(Dpol), Hh: List(Dpol), Hhh: List(Dpol)) ==
       null H => append(Hh,Hhh)
       h1:= first(H)
       hlcm:= sup(degree(h1), degree(h))
       plc:= extendedEuclidean(leadingCoefficient(h), leadingCoefficient(h1))
       hp:= monomial(plc.coef1,subtractIfCan(hlcm, degree(h))::Expon)*h +
            monomial(plc.coef2,subtractIfCan(hlcm, degree(h1))::Expon)*h1
       (ecrithinH(hp, Hh) and ecrithinH(hp, Hhh)) =>
         hpp:= append(rest(H),Hh)
         hp:= ecredPol(eRed(hp,hpp,hpp),hpp)
         updatH(h, rest(H), crithdelH(hp,Hh),cons(hp,crithdelH(hp,Hhh)))
       updatH(h, rest(H), Hh,Hhh)
 
             --------------------------------------------------
             ---- delete elements in cons(h,H)
 
   crithdelH(h: Dpol, H: List(Dpol))==
        null H => nil
        h1:= first(H)
        dh1:= degree h1
        dh:= degree h
        ecritM(dh, lc h, dh1, lc h1) => crithdelH(h, rest(H))
        dh1 = sup(dh,dh1) =>
         plc:= extendedEuclidean( lc h1, lc h)
         cons(plc.coef1*h1+monomial(plc.coef2,subtractIfCan(dh1,dh)::Expon)*h,
               crithdelH(h,rest(H)))
        cons(h1, crithdelH(h,rest(H)))
 
   eminGbasis(F: List(Dpol)) ==
        null F => nil
        newbas := eminGbasis rest F
        cons(ecredPol( first(F), newbas),newbas)
 
             ------------------------------------------------
             --- does h belong to H
 
   ecrithinH(h: Dpol, H: List(Dpol))==
        null H  => true
        h1:= first(H)
        ecritM(degree h1, lc h1, degree h, lc h) => false
        ecrithinH(h, rest(H))
 
            -----------------------------
            --- calculate  euclidean S-polynomial of a critical pair
 
   esPol(p:critPair)==
      Tij := p.lcmfij
      fi := p.poli
      fj := p.polj
      lij:= lcm(leadingCoefficient(fi), leadingCoefficient(fj))
      red(fi)*monomial((lij exquo leadingCoefficient(fi))::Dom,
                        subtractIfCan(Tij, degree fi)::Expon) -
        red(fj)*monomial((lij exquo leadingCoefficient(fj))::Dom,
                         subtractIfCan(Tij, degree fj)::Expon)
 
            ----------------------------
 
            --- euclidean reduction mod F
 
   eRed(s: Dpol, H: List(Dpol), Hh: List(Dpol)) ==
     ( s = 0 or null H ) => s
     f1:= first(H)
     ds:= degree s
     lf1:= leadingCoefficient(f1)
     ls:= leadingCoefficient(s)
     e: Union(Expon, "failed")
     (((e:= subtractIfCan(ds, degree f1))  case "failed" ) _
           or sizeLess?(ls, lf1) ) =>
        eRed(s, rest(H), Hh)
     sdf1:= divide(ls, lf1)
     q1:= sdf1.quotient
     sdf1.remainder = 0 =>
        eRed(red(s) - monomial(q1,e)*reductum(f1), Hh, Hh)
     eRed(s -(monomial(q1, e)*f1), rest(H), Hh)
 
            ----------------------------
 
            --- crit T  true, if e1 and e2 are disjoint
 
   ecritT(p: critPair) ==
          pi:= p.poli
          pj:= p.polj
          ci:= lc pi
          cj:= lc pj
          (p.lcmfij = degree pi + degree pj) and  (p.lcmcij = ci*cj)
 
            ----------------------------
 
            --- crit M - true, if lcm#2 multiple of lcm#1
 
   ecritM(e1: Expon, c1: Dom, e2: Expon, c2: Dom) ==
     en: Union(Expon, "failed")
     ((en:=subtractIfCan(e2, e1)) case "failed") or
       ((c2 exquo c1) case "failed") => false
     true
            ----------------------------
 
            --- crit B - true, if eik is a multiple of eh and eik ^equal
            ---          lcm(eh,ei) and eik ^equal lcm(eh,ek)
 
   ecritB(eh:Expon, ch: Dom, ei:Expon, ci: Dom, ek:Expon, ck: Dom) ==
       eik:= sup(ei, ek)
       cik:= lcm(ci, ck)
       ecritM(eh, ch, eik, cik) and
             ^ecritM(eik, cik, sup(ei, eh), lcm(ci, ch)) and
                ^ecritM(eik, cik, sup(ek, eh), lcm(ck, ch))
 
            -------------------------------
 
            --- reduce p1 mod lp
 
   euclideanNormalForm(p1: Dpol, lp: List(Dpol))==
       eRed(p1, lp, lp)
 
            ---------------------------------
 
            ---  insert element in sorted list
 
   sortin(p1: Dpol, lp: List(Dpol))==
      null lp => [p1]
      f1:= first(lp)
      elf1:= degree(f1)
      ep1:= degree(p1)
      ((elf1 < ep1) or ((elf1 = ep1) and
        sizeLess?(leadingCoefficient(f1),leadingCoefficient(p1)))) =>
         cons(f1,sortin(p1, rest(lp)))
      cons(p1,lp)
 
   updatD(D1: List(critPair), D2: List(critPair)) ==
      null D1 => D2
      null D2 => D1
      dl1:= first(D1)
      dl2:= first(D2)
      (dl1.lcmfij  <  dl2.lcmfij) => cons(dl1, updatD(D1.rest, D2))
      cons(dl2, updatD(D1, D2.rest))
 
            ----  calculate number of terms of polynomial
 
   lepol(p1:Dpol)==
      n: Integer
      n:= 0
      while p1 ^= 0 repeat
         n:= n + 1
         p1:= red(p1)
      n
 
            ----  print blanc lines
 
   prinb(n: Integer)==
        for i in 1..n repeat messagePrint("    ")
 
            ----  print reduced critpair polynom
 
   prinshINFO(h: Dpol)==
           prinb(2)
           messagePrint(" reduced Critpair - Polynom :")
           prinb(2)
           print(h::Ex)
           prinb(2)
 
            -------------------------------
 
            ----  print info string
 
   prindINFO(cp: critPair, ps: Dpol, ph: Dpol, i1:Integer,
             i2:Integer, n:Integer) ==
       ll: List Prinp
       a: Dom
       cpi:= cp.poli
       cpj:= cp.polj
       if n = 1 then
        prinb(1)
        messagePrint("you choose option  -info-  ")
        messagePrint("abbrev. for the following information strings are")
        messagePrint("  ci  =>  Leading monomial  for critpair calculation")
        messagePrint("  tci =>  Number of terms of polynomial i")
        messagePrint("  cj  =>  Leading monomial  for critpair calculation")
        messagePrint("  tcj =>  Number of terms of polynomial j")
        messagePrint("  c   =>  Leading monomial of critpair polynomial")
        messagePrint("  tc  =>  Number of terms of critpair polynomial")
        messagePrint("  rc  =>  Leading monomial of redcritpair polynomial")
        messagePrint("  trc =>  Number of terms of redcritpair polynomial")
        messagePrint("  tF  =>  Number of polynomials in reduction list F")
        messagePrint("  tD  =>  Number of critpairs still to do")
        prinb(4)
        n:= 2
       prinb(1)
       a:= 1
       ph = 0  =>
          ps = 0 =>
            ll:= [[monomial(a,degree(cpi)),lepol(cpi),monomial(a,degree(cpj)),
             lepol(cpj),ps,0,ph,0,i1,i2]$Prinp]
            print(ll::Ex)
            prinb(1)
            n
          ll:= [[monomial(a,degree(cpi)),lepol(cpi),
            monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
             lepol(ps), ph,0,i1,i2]$Prinp]
          print(ll::Ex)
          prinb(1)
          n
       ll:= [[monomial(a,degree(cpi)),lepol(cpi),
            monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
             lepol(ps),monomial(a,degree(ph)),lepol(ph),i1,i2]$Prinp]
       print(ll::Ex)
       prinb(1)
       n
 
            -------------------------------
 
            ----  print the groebner basis polynomials
 
   prinpolINFO(pl: List(Dpol))==
       n:Integer
       n:= #pl
       prinb(1)
       n = 1 =>
         print("  There is 1  Groebner Basis Polynomial "::Ex)
         prinb(2)
       print("  There are "::Ex)
       prinb(1)
       print(n::Ex)
       prinb(1)
       print("  Groebner Basis Polynomials. "::Ex)
       prinb(2)