This file is indexed.

/usr/share/axiom-20170501/src/algebra/GBINTERN.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
)abbrev package GBINTERN GroebnerInternalPackage
++ References:
++ Normxx Notes 13: How to Compute a Groebner Basis
++ Description:
++ This package provides low level tools for Groebner basis computations

GroebnerInternalPackage(Dom, Expon, VarSet, Dpol) : SIG == CODE where
  Dom : GcdDomain
  Expon : OrderedAbelianMonoidSup
  VarSet : OrderedSet
  Dpol :  PolynomialCategory(Dom, Expon, VarSet)

  NNI    ==> NonNegativeInteger
   ------  Definition of Record critPair and Prinp

  critPair ==> Record( lcmfij: Expon, totdeg: NonNegativeInteger,
                      poli: Dpol, polj: Dpol )
  sugarPol ==> Record( totdeg: NonNegativeInteger, pol : Dpol)
  Prinp    ==> Record( ci:Dpol,tci:Integer,cj:Dpol,tcj:Integer,c:Dpol,
                tc:Integer,rc:Dpol,trc:Integer,tF:Integer,tD:Integer)
  Prinpp   ==> Record( ci:Dpol,tci:Integer,cj:Dpol,tcj:Integer,c:Dpol,
                tc:Integer,rc:Dpol,trc:Integer,tF:Integer,tDD:Integer,
                 tDF:Integer)
  SIG ==> with

    credPol : (Dpol, List(Dpol))  -> Dpol
      ++ credPol \undocumented

    redPol : (Dpol, List(Dpol))  -> Dpol
      ++ redPol \undocumented

    gbasis : (List(Dpol), Integer, Integer) -> List(Dpol)
      ++ gbasis \undocumented

    critT : critPair   -> Boolean
      ++ critT \undocumented

    critM : (Expon, Expon) -> Boolean
      ++ critM \undocumented

    critB : (Expon, Expon, Expon, Expon) -> Boolean
      ++ critB \undocumented

    critBonD : (Dpol, List(critPair)) -> List(critPair)
      ++ critBonD \undocumented

    critMTonD1 : (List(critPair)) -> List(critPair)
      ++ critMTonD1 \undocumented

    critMonD1 : (Expon, List(critPair)) -> List(critPair)
      ++ critMonD1 \undocumented

    redPo : (Dpol, List(Dpol) )  ->  Record(poly:Dpol, mult:Dom)
      ++ redPo \undocumented

    hMonic : Dpol  -> Dpol
      ++ hMonic \undocumented

    updatF : (Dpol, NNI, List(sugarPol) ) -> List(sugarPol)
      ++ updatF \undocumented

    sPol : critPair  -> Dpol
      ++ sPol \undocumented

    updatD : (List(critPair), List(critPair)) -> List(critPair)
      ++ updatD \undocumented

    minGbasis : List(Dpol) -> List(Dpol)
      ++ minGbasis \undocumented

    lepol : Dpol -> Integer
      ++ lepol \undocumented

    prinshINFO : Dpol -> Void
      ++ prinshINFO \undocumented

    prindINFO : (critPair, Dpol, Dpol,Integer,Integer,Integer) -> Integer
      ++ prindINFO \undocumented

    fprindINFO : (critPair, Dpol, Dpol, Integer,Integer,Integer
                ,Integer) ->  Integer
      ++ fprindINFO \undocumented

    prinpolINFO : List(Dpol) -> Void
      ++ prinpolINFO \undocumented

    prinb : Integer-> Void
      ++ prinb \undocumented

    critpOrder : (critPair, critPair) -> Boolean
      ++ critpOrder \undocumented

    makeCrit : (sugarPol, Dpol, NonNegativeInteger) -> critPair
      ++ makeCrit \undocumented

    virtualDegree : Dpol -> NonNegativeInteger
      ++ virtualDegree \undocumented

  CODE ==> add

   Ex ==> OutputForm
   import OutputForm

   ------  Definition of intermediate functions
   if Dpol has totalDegree: Dpol -> NonNegativeInteger then

     virtualDegree p == totalDegree p

   else

     virtualDegree p == 0

   ------  ordering of critpairs

   critpOrder(cp1,cp2) ==
     cp1.totdeg < cp2.totdeg => true
     cp2.totdeg < cp1.totdeg => false
     cp1.lcmfij < cp2.lcmfij

   ------    creating a critical pair

   makeCrit(sp1, p2, totdeg2) ==
     p1 := sp1.pol
     deg := sup(degree(p1), degree(p2))
     e1 := subtractIfCan(deg, degree(p1))::Expon
     e2 := subtractIfCan(deg, degree(p2))::Expon
     tdeg := max(sp1.totdeg + virtualDegree(monomial(1,e1)),
                 totdeg2 + virtualDegree(monomial(1,e2)))
     [deg, tdeg, p1, p2]$critPair

   ------    calculate basis

   gbasis(Pol: List(Dpol), xx1: Integer, xx2: Integer ) ==
     D, D1: List(critPair)
     ---------   create D and Pol

     Pol1:= sort((z1,z2) +-> degree z1 > degree z2, Pol)
     basPols:= updatF(hMonic(first Pol1),virtualDegree(first Pol1),[])
     Pol1:= rest(Pol1)
     D:= nil
     while _^ null Pol1 repeat
        h:= hMonic(first(Pol1))
        Pol1:= rest(Pol1)
        toth := virtualDegree h
        D1:= [makeCrit(x,h,toth) for x in basPols]
        D:= updatD(critMTonD1(sort(critpOrder, D1)),
                   critBonD(h,D))
        basPols:= updatF(h,toth,basPols)
     D:= sort(critpOrder, D)
     xx:= xx2
     --------  loop

     redPols := [x.pol for x in basPols]
     while _^ null D repeat
         D0:= first D
         s:= hMonic(sPol(D0))
         D:= rest(D)
         h:= hMonic(redPol(s,redPols))
         if xx1 = 1  then
              prinshINFO(h)
         h = 0  =>
          if xx2 = 1 then
           prindINFO(D0,s,h,# basPols, # D,xx)
           xx:= 2
          " go to top of while "
         degree(h) = 0 =>
           D:= nil
           if xx2 = 1 then
            prindINFO(D0,s,h,# basPols, # D,xx)
            xx:= 2
           basPols:= updatF(h,0,[])
           leave "out of while"
         D1:= [makeCrit(x,h,D0.totdeg) for x in basPols]
         D:= updatD(critMTonD1(sort(critpOrder, D1)),
                   critBonD(h,D))
         basPols:= updatF(h,D0.totdeg,basPols)
         redPols := concat(redPols,h)
         if xx2 = 1 then
            prindINFO(D0,s,h,# basPols, # D,xx)
            xx:= 2
     Pol := [x.pol for x in basPols]
     if xx2 = 1 then
       prinpolINFO(Pol)
       messagePrint("    THE GROEBNER BASIS POLYNOMIALS")
     if xx1 = 1 and xx2 ^= 1 then
       messagePrint("    THE GROEBNER BASIS POLYNOMIALS")
     Pol

             --------------------------------------

             --- erase multiple of e in D2 using crit M

   critMonD1(e: Expon, D2: List(critPair))==
      null D2 => nil
      x:= first(D2)
      critM(e, x.lcmfij) => critMonD1(e, rest(D2))
      cons(x, critMonD1(e, rest(D2)))

             ----------------------------

             --- reduce D1 using crit T and crit M

   critMTonD1(D1: List(critPair))==
           null D1 => nil
           f1:= first(D1)
           s1:= #(D1)
           cT1:= critT(f1)
           s1= 1 and cT1 => nil
           s1= 1 => D1
           e1:= f1.lcmfij
           r1:= rest(D1)
           e1 = (first r1).lcmfij  =>
              cT1 =>   critMTonD1(cons(f1, rest(r1)))
              critMTonD1(r1)
           D1 := critMonD1(e1, r1)
           cT1 => critMTonD1(D1)
           cons(f1, critMTonD1(D1))

             -----------------------------

             --- erase elements in D fullfilling crit B

   critBonD(h:Dpol, D: List(critPair))==
         null D => nil
         x:= first(D)
         critB(degree(h), x.lcmfij, degree(x.poli), degree(x.polj)) =>
           critBonD(h, rest(D))
         cons(x, critBonD(h, rest(D)))

             -----------------------------

             --- concat F and h and erase multiples of h in F

   updatF(h: Dpol, deg:NNI, F: List(sugarPol)) ==
       null F => [[deg,h]]
       f1:= first(F)
       critM(degree(h), degree(f1.pol))  => updatF(h, deg, rest(F))
       cons(f1, updatF(h, deg, rest(F)))

             -----------------------------

             --- concat ordered critical pair lists D1 and D2

   updatD(D1: List(critPair), D2: List(critPair)) ==
      null D1 => D2
      null D2 => D1
      dl1:= first(D1)
      dl2:= first(D2)
      critpOrder(dl1,dl2) => cons(dl1, updatD(D1.rest, D2))
      cons(dl2, updatD(D1, D2.rest))

            -----------------------------

            --- remove gcd from pair of coefficients

   gcdCo(c1:Dom, c2:Dom):Record(co1:Dom,co2:Dom) ==
      d:=gcd(c1,c2)
      [(c1 exquo d)::Dom, (c2 exquo d)::Dom]

            --- calculate S-polynomial of a critical pair

   sPol(p:critPair)==
      Tij := p.lcmfij
      fi := p.poli
      fj := p.polj
      cc := gcdCo(leadingCoefficient fi, leadingCoefficient fj)
      reductum(fi)*monomial(cc.co2,subtractIfCan(Tij, degree fi)::Expon) -
        reductum(fj)*monomial(cc.co1,subtractIfCan(Tij, degree fj)::Expon)

            ----------------------------

            --- reduce critpair polynomial mod F
            --- iterative version

   redPo(s: Dpol, F: List(Dpol)) ==
      m:Dom := 1
      Fh := F
      while _^ ( s = 0 or null F ) repeat
        f1:= first(F)
        s1:= degree(s)
        e: Union(Expon, "failed")
        (e:= subtractIfCan(s1, degree(f1))) case Expon  =>
           cc:=gcdCo(leadingCoefficient f1, leadingCoefficient s)
           s:=cc.co1*reductum(s) - monomial(cc.co2,e)*reductum(f1)
           m := m*cc.co1
           F:= Fh
        F:= rest F
      [s,m]

   redPol(s: Dpol, F: List(Dpol)) ==  credPol(redPo(s,F).poly,F)

            ----------------------------

            --- crit T  true, if e1 and e2 are disjoint

   critT(p: critPair) == p.lcmfij =  (degree(p.poli) + degree(p.polj))

            ----------------------------

            --- crit M - true, if lcm#2 multiple of lcm#1

   critM(e1: Expon, e2: Expon) ==
         en: Union(Expon, "failed")
         (en:=subtractIfCan(e2, e1)) case Expon

            ----------------------------

            --- crit B - true, if eik is a multiple of eh and eik ^equal
            ---          lcm(eh,ei) and eik ^equal lcm(eh,ek)

   critB(eh:Expon, eik:Expon, ei:Expon, ek:Expon) ==
       critM(eh, eik) and (eik ^= sup(eh, ei)) and (eik ^= sup(eh, ek))

            ----------------------------

            ---  make polynomial monic case Domain a Field

   hMonic(p: Dpol) ==
        p= 0 => p
        -- inv(leadingCoefficient(p))*p
        primitivePart p

            -----------------------------

            ---  reduce all terms of h mod F  (iterative version )

   credPol(h: Dpol, F: List(Dpol) ) ==
        null F => h
        h0:Dpol:= monomial(leadingCoefficient h, degree h)
        while (h:=reductum h) ^= 0 repeat
           hred:= redPo(h, F)
           h := hred.poly
           h0:=(hred.mult)*h0 + monomial(leadingCoefficient(h),degree h)
        h0

            -------------------------------

            ----  calculate minimal basis for ordered F

   minGbasis(F: List(Dpol)) ==
        null F => nil
        newbas := minGbasis rest F
        cons(hMonic credPol( first(F), newbas),newbas)

            -------------------------------

            ----  calculate number of terms of polynomial

   lepol(p1:Dpol)==
      n: Integer
      n:= 0
      while p1 ^= 0 repeat
         n:= n + 1
         p1:= reductum(p1)
      n

            ----  print blanc lines

   prinb(n: Integer)==
      for x in 1..n repeat
         messagePrint("    ")

            ----  print reduced critpair polynom

   prinshINFO(h: Dpol)==
           prinb(2)
           messagePrint(" reduced Critpair - Polynom :")
           prinb(2)
           print(h::Ex)
           prinb(2)

            -------------------------------

            ----  print info string

   prindINFO(cp: critPair, ps: Dpol, ph: Dpol, i1:Integer,
             i2:Integer, n:Integer) ==
       ll: List Prinp
       a: Dom
       cpi:= cp.poli
       cpj:= cp.polj
       if n = 1 then
        prinb(1)
        messagePrint("you choose option  -info-  ")
        messagePrint("abbrev. for the following information strings are")
        messagePrint("  ci  =>  Leading monomial  for critpair calculation")
        messagePrint("  tci =>  Number of terms of polynomial i")
        messagePrint("  cj  =>  Leading monomial  for critpair calculation")
        messagePrint("  tcj =>  Number of terms of polynomial j")
        messagePrint("  c   =>  Leading monomial of critpair polynomial")
        messagePrint("  tc  =>  Number of terms of critpair polynomial")
        messagePrint("  rc  =>  Leading monomial of redcritpair polynomial")
        messagePrint("  trc =>  Number of terms of redcritpair polynomial")
        messagePrint("  tF  =>  Number of polynomials in reduction list F")
        messagePrint("  tD  =>  Number of critpairs still to do")
        prinb(4)
        n:= 2
       prinb(1)
       a:= 1
       ph = 0  =>
          ps = 0 =>
            ll:= [[monomial(a,degree(cpi)),lepol(cpi),
                  monomial(a,degree(cpj)),
                   lepol(cpj),ps,0,ph,0,i1,i2]$Prinp]
            print(ll::Ex)
            prinb(1)
            n
          ll:= [[monomial(a,degree(cpi)),lepol(cpi),
             monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
              lepol(ps), ph,0,i1,i2]$Prinp]
          print(ll::Ex)
          prinb(1)
          n
       ll:= [[monomial(a,degree(cpi)),lepol(cpi),
            monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
             lepol(ps),monomial(a,degree(ph)),lepol(ph),i1,i2]$Prinp]
       print(ll::Ex)
       prinb(1)
       n

            -------------------------------

            ----  print the groebner basis polynomials

   prinpolINFO(pl: List(Dpol))==
       n:Integer
       n:= # pl
       prinb(1)
       n = 1 =>
         messagePrint("  There is 1  Groebner Basis Polynomial ")
         prinb(2)
       messagePrint("  There are ")
       prinb(1)
       print(n::Ex)
       prinb(1)
       messagePrint("  Groebner Basis Polynomials. ")
       prinb(2)

   fprindINFO(cp: critPair, ps: Dpol, ph: Dpol, i1:Integer,
             i2:Integer, i3:Integer, n: Integer) ==
       ll: List Prinpp
       a: Dom
       cpi:= cp.poli
       cpj:= cp.polj
       if n = 1 then
        prinb(1)
        messagePrint("you choose option  -info-  ")
        messagePrint("abbrev. for the following information strings are")
        messagePrint("  ci  =>  Leading monomial  for critpair calculation")
        messagePrint("  tci =>  Number of terms of polynomial i")
        messagePrint("  cj  =>  Leading monomial  for critpair calculation")
        messagePrint("  tcj =>  Number of terms of polynomial j")
        messagePrint("  c   =>  Leading monomial of critpair polynomial")
        messagePrint("  tc  =>  Number of terms of critpair polynomial")
        messagePrint("  rc  =>  Leading monomial of redcritpair polynomial")
        messagePrint("  trc =>  Number of terms of redcritpair polynomial")
        messagePrint("  tF  =>  Number of polynomials in reduction list F")
        messagePrint("  tD  =>  Number of critpairs still to do")
        messagePrint("  tDF =>  Number of subproblems still to do")
        prinb(4)
        n:= 2
       prinb(1)
       a:= 1
       ph = 0  =>
          ps = 0 =>
            ll:= [[monomial(a,degree(cpi)),lepol(cpi),
              monomial(a,degree(cpj)),
               lepol(cpj),ps,0,ph,0,i1,i2,i3]$Prinpp]
            print(ll::Ex)
            prinb(1)
            n
          ll:= [[monomial(a,degree(cpi)),lepol(cpi),
            monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
             lepol(ps), ph,0,i1,i2,i3]$Prinpp]
          print(ll::Ex)
          prinb(1)
          n
       ll:= [[monomial(a,degree(cpi)),lepol(cpi),
            monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
             lepol(ps),monomial(a,degree(ph)),lepol(ph),i1,i2,i3]$Prinpp]
       print(ll::Ex)
       prinb(1)
       n