/usr/share/axiom-20170501/src/algebra/GCNAALG.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | )abbrev domain GCNAALG GenericNonAssociativeAlgebra
++ Authors: J. Grabmeier, R. Wisbauer
++ Date Created: 26 June 1991
++ Date Last Updated: 26 June 1991
++ Reference:
++ A. Woerz-Busekros: Algebra in Genetics
++ Lectures Notes in Biomathematics 36,
++ Springer-Verlag, Heidelberg, 1980
++ Description:
++ AlgebraGenericElementPackage allows you to create generic elements
++ of an algebra, the scalars are extended to include symbolic
++ coefficients
GenericNonAssociativeAlgebra(R,n,ls,gamma) : SIG == CODE where
R : CommutativeRing
n : PositiveInteger
ls : List Symbol
gamma : Vector Matrix R
NNI ==> NonNegativeInteger
V ==> Vector
PR ==> Polynomial R
FPR ==> Fraction Polynomial R
SUP ==> SparseUnivariatePolynomial
S ==> Symbol
SIG ==> Join(FramedNonAssociativeAlgebra(FPR), _
LeftModule(SquareMatrix(n,FPR)) ) with
coerce : Vector FPR -> %
++ coerce(v) assumes that it is called with a vector
++ of length equal to the dimension of the algebra, then
++ a linear combination with the basis element is formed
leftUnits : () -> Union(Record(particular: %, basis: List %), "failed")
++ leftUnits() returns the affine space of all left units of the
++ algebra, or \spad{"failed"} if there is none
rightUnits : () -> Union(Record(particular: %, basis: List %), "failed")
++ rightUnits() returns the affine space of all right units of the
++ algebra, or \spad{"failed"} if there is none
generic : () -> %
++ generic() returns a generic element, the linear combination
++ of the fixed basis with the symbolic coefficients
++ \spad{%x1,%x2,..}
generic : Symbol -> %
++ generic(s) returns a generic element, the linear combination
++ of the fixed basis with the symbolic coefficients
++ \spad{s1,s2,..}
generic : Vector Symbol -> %
++ generic(vs) returns a generic element, the linear combination
++ of the fixed basis with the symbolic coefficients
++ \spad{vs};
++ error, if the vector of symbols is too short
generic : Vector % -> %
++ generic(ve) returns a generic element, the linear combination
++ of \spad{ve} basis with the symbolic coefficients
++ \spad{%x1,%x2,..}
generic : (Symbol, Vector %) -> %
++ generic(s,v) returns a generic element, the linear combination
++ of v with the symbolic coefficients
++ \spad{s1,s2,..}
generic : (Vector Symbol, Vector %) -> %
++ generic(vs,ve) returns a generic element, the linear combination
++ of \spad{ve} with the symbolic coefficients \spad{vs}
++ error, if the vector of symbols is shorter than the vector of
++ elements
if R has IntegralDomain then
leftRankPolynomial : () -> SparseUnivariatePolynomial FPR
++ leftRankPolynomial() returns the left minimimal polynomial
++ of the generic element
genericLeftMinimalPolynomial : % -> SparseUnivariatePolynomial FPR
++ genericLeftMinimalPolynomial(a) substitutes the coefficients
++ of {em a} for the generic coefficients in
++ \spad{leftRankPolynomial()}
genericLeftTrace : % -> FPR
++ genericLeftTrace(a) substitutes the coefficients
++ of \spad{a} for the generic coefficients into the
++ coefficient of the second highest term in
++ \spadfun{leftRankPolynomial} and changes the sign.
++ This is a linear form
genericLeftNorm : % -> FPR
++ genericLeftNorm(a) substitutes the coefficients
++ of \spad{a} for the generic coefficients into the
++ coefficient of the constant term in \spadfun{leftRankPolynomial}
++ and changes the sign if the degree of this polynomial is odd.
++ This is a form of degree k
rightRankPolynomial : () -> SparseUnivariatePolynomial FPR
++ rightRankPolynomial() returns the right minimimal polynomial
++ of the generic element
genericRightMinimalPolynomial : % -> SparseUnivariatePolynomial FPR
++ genericRightMinimalPolynomial(a) substitutes the coefficients
++ of \spad{a} for the generic coefficients in
++ \spadfun{rightRankPolynomial}
genericRightTrace : % -> FPR
++ genericRightTrace(a) substitutes the coefficients
++ of \spad{a} for the generic coefficients into the
++ coefficient of the second highest term in
++ \spadfun{rightRankPolynomial} and changes the sign
genericRightNorm : % -> FPR
++ genericRightNorm(a) substitutes the coefficients
++ of \spad{a} for the generic coefficients into the
++ coefficient of the constant term in \spadfun{rightRankPolynomial}
++ and changes the sign if the degree of this polynomial is odd
genericLeftTraceForm : (%,%) -> FPR
++ genericLeftTraceForm (a,b) is defined to be
++ \spad{genericLeftTrace (a*b)}, this defines
++ a symmetric bilinear form on the algebra
genericLeftDiscriminant : () -> FPR
++ genericLeftDiscriminant() is the determinant of the
++ generic left trace forms of all products of basis element,
++ if the generic left trace form is associative, an algebra
++ is separable if the generic left discriminant is invertible,
++ if it is non-zero, there is some ring extension which
++ makes the algebra separable
genericRightTraceForm : (%,%) -> FPR
++ genericRightTraceForm (a,b) is defined to be
++ \spadfun{genericRightTrace (a*b)}, this defines
++ a symmetric bilinear form on the algebra
genericRightDiscriminant : () -> FPR
++ genericRightDiscriminant() is the determinant of the
++ generic left trace forms of all products of basis element,
++ if the generic left trace form is associative, an algebra
++ is separable if the generic left discriminant is invertible,
++ if it is non-zero, there is some ring extension which
++ makes the algebra separable
conditionsForIdempotents : Vector % -> List Polynomial R
++ conditionsForIdempotents([v1,...,vn]) determines a complete list
++ of polynomial equations for the coefficients of idempotents
++ with respect to the \spad{R}-module basis \spad{v1},...,\spad{vn}
conditionsForIdempotents : () -> List Polynomial R
++ conditionsForIdempotents() determines a complete list
++ of polynomial equations for the coefficients of idempotents
++ with respect to the fixed \spad{R}-module basis
CODE ==> AlgebraGivenByStructuralConstants(FPR,n,ls,_
coerce(gamma)$CoerceVectorMatrixPackage(R) ) add
listOfNumbers : List String := [PRINC_-TO_-STRING(q)$Lisp for q in 1..n]
symbolsForCoef : V Symbol :=
[concat("%", concat("x", i))::Symbol for i in listOfNumbers]
genericElement : % :=
v : Vector PR :=
[monomial(1$PR, [symbolsForCoef.i],[1]) for i in 1..n]
convert map(coerce,v)$VectorFunctions2(PR,FPR)
eval : (FPR, %) -> FPR
eval(rf,a) ==
-- for the moment we only substitute the numerators
-- of the coefficients
coefOfa : List PR :=
map(numer, entries coordinates a)$ListFunctions2(FPR,PR)
ls : List PR :=[monomial(1$PR, [s],[1]) for s in entries symbolsForCoef]
lEq : List Equation PR := []
for i in 1..maxIndex ls repeat
lEq := cons(equation(ls.i,coefOfa.i)$Equation(PR) , lEq)
top : PR := eval(numer(rf),lEq)$PR
bot : PR := eval(numer(rf),lEq)$PR
top/bot
if R has IntegralDomain then
genericLeftTraceForm(a,b) == genericLeftTrace(a*b)
genericLeftDiscriminant() ==
listBasis : List % := entries basis()$%
m : Matrix FPR := matrix
[[genericLeftTraceForm(a,b) for a in listBasis] for b in listBasis]
determinant m
genericRightTraceForm(a,b) == genericRightTrace(a*b)
genericRightDiscriminant() ==
listBasis : List % := entries basis()$%
m : Matrix FPR := matrix
[[genericRightTraceForm(a,b) for a in listBasis] for b in listBasis]
determinant m
leftRankPoly : SparseUnivariatePolynomial FPR := 0
initLeft? : Boolean :=true
initializeLeft: () -> Void
initializeLeft() ==
-- reset initialize flag
initLeft?:=false
leftRankPoly := leftMinimalPolynomial genericElement
void()$Void
rightRankPoly : SparseUnivariatePolynomial FPR := 0
initRight? : Boolean :=true
initializeRight: () -> Void
initializeRight() ==
-- reset initialize flag
initRight?:=false
rightRankPoly := rightMinimalPolynomial genericElement
void()$Void
leftRankPolynomial() ==
if initLeft? then initializeLeft()
leftRankPoly
rightRankPolynomial() ==
if initRight? then initializeRight()
rightRankPoly
genericLeftMinimalPolynomial a ==
if initLeft? then initializeLeft()
map(x+->eval(x,a),leftRankPoly)$SUP(FPR)
genericRightMinimalPolynomial a ==
if initRight? then initializeRight()
map(x+->eval(x,a),rightRankPoly)$SUP(FPR)
genericLeftTrace a ==
if initLeft? then initializeLeft()
d1 : NNI := (degree leftRankPoly - 1) :: NNI
rf : FPR := coefficient(leftRankPoly, d1)
rf := eval(rf,a)
- rf
genericRightTrace a ==
if initRight? then initializeRight()
d1 : NNI := (degree rightRankPoly - 1) :: NNI
rf : FPR := coefficient(rightRankPoly, d1)
rf := eval(rf,a)
- rf
genericLeftNorm a ==
if initLeft? then initializeLeft()
rf : FPR := coefficient(leftRankPoly, 1)
if odd? degree leftRankPoly then rf := - rf
rf
genericRightNorm a ==
if initRight? then initializeRight()
rf : FPR := coefficient(rightRankPoly, 1)
if odd? degree rightRankPoly then rf := - rf
rf
conditionsForIdempotents(b: V %) : List Polynomial R ==
x : % := generic(b)
map(numer,entries coordinates(x*x-x,b))$ListFunctions2(FPR,PR)
conditionsForIdempotents(): List Polynomial R ==
x : % := genericElement
map(numer,entries coordinates(x*x-x))$ListFunctions2(FPR,PR)
generic() == genericElement
generic(vs:V S, ve: V %): % ==
maxIndex v > maxIndex ve =>
error "generic: too little symbols"
v : Vector PR :=
[monomial(1$PR, [vs.i],[1]) for i in 1..maxIndex ve]
represents(map(coerce,v)$VectorFunctions2(PR,FPR),ve)
generic(s: S, ve: V %): % ==
lON : List String := [PRINC_-TO_-STRING(q)$Lisp for q in 1..maxIndex ve]
sFC : Vector Symbol :=
[concat(s pretend String, i)::Symbol for i in lON]
generic(sFC, ve)
generic(ve : V %) ==
lON : List String := [PRINC_-TO_-STRING(q)$Lisp for q in 1..maxIndex ve]
sFC : Vector Symbol :=
[concat("%", concat("x", i))::Symbol for i in lON]
v : Vector PR :=
[monomial(1$PR, [sFC.i],[1]) for i in 1..maxIndex ve]
represents(map(coerce,v)$VectorFunctions2(PR,FPR),ve)
generic(vs:V S): % == generic(vs, basis()$%)
generic(s: S): % == generic(s, basis()$%)
|