/usr/share/axiom-20170501/src/algebra/GENPGCD.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | )abbrev package GENPGCD GeneralPolynomialGcdPackage
++ Description:
GeneralPolynomialGcdPackage(E,OV,R,P) : SIG == CODE where
R : PolynomialFactorizationExplicit
P : PolynomialCategory(R,E,OV)
OV : OrderedSet
E : OrderedAbelianMonoidSup
SUPP ==> SparseUnivariatePolynomial P
SIG ==> with
gcdPolynomial : (SUPP,SUPP) -> SUPP
++ gcdPolynomial(p,q) returns the GCD of p and q
randomR : () ->R
++ randomR() should be local but conditional
CODE ==> add
SUPR ==> SparseUnivariatePolynomial R
import UnivariatePolynomialCategoryFunctions2(R,SUPR,P,SUPP)
import UnivariatePolynomialCategoryFunctions2(P,SUPP,R,SUPR)
-------- Local Functions --------
better : (P,P) -> Boolean
lift : (SUPR,SUPP,SUPR,List OV,List R) -> Union(SUPP,"failed")
-- lifts first and third arguments as factors of the second
-- fourth is number of variables.
monomContentSup : SUPP -> SUPP
gcdTrivial : (SUPP,SUPP) -> SUPP
gcdSameVariables: (SUPP,SUPP,List OV) -> SUPP
recursivelyGCDCoefficients: (SUPP,List OV,SUPP,List OV) -> SUPP
flatten : (SUPP,List OV) -> SUPP
-- evaluates out all variables in the second
-- argument, leaving a polynomial of the same
-- degree
variables : SUPP -> List OV
---- JHD's exported functions ---
gcdPolynomial(p1:SUPP,p2:SUPP) ==
zero? p1 => p2
zero? p2 => p1
0=degree p1 => gcdTrivial(p1,p2)
0=degree p2 => gcdTrivial(p2,p1)
if degree p1 < degree p2 then (p1,p2):=(p2,p1)
p1 exquo p2 case SUPP => (unitNormal p2).canonical
c1:= monomContentSup(p1)
c2:= monomContentSup(p2)
p1:= (p1 exquo c1)::SUPP
p2:= (p2 exquo c2)::SUPP
(p1 exquo p2) case SUPP => (unitNormal p2).canonical * gcd(c1,c2)
vp1:=variables p1
vp2:=variables p2
v1:=setDifference(vp1,vp2)
v2:=setDifference(vp2,vp1)
#v1 = 0 and #v2 = 0 => gcdSameVariables(p1,p2,vp1)*gcd(c1,c2)
-- all variables are in common
v:=setDifference(vp1,v1)
pp1:=flatten(p1,v1)
pp2:=flatten(p2,v2)
g:=gcdSameVariables(pp1,pp2,v)
(g = 1) => gcd(c1,c2)::SUPP
(#v1 = 0 or not (p1 exquo g) case "failed") and
-- if #vi = 0 then pp1 = p1, so we know g divides
(#v2 = 0 or not (p2 exquo g) case "failed")
=> g*gcd(c1,c2) -- divdes them both, so is the gcd
-- OK, so it's not the gcd: try again
v:=variables g -- there can be at most these variables in answer
v1:=setDifference(vp1,v)
v2:=setDifference(vp2,v)
if (#v1 = 0) then g:= gcdSameVariables(g,flatten(p2,v2),v)
else if (#v2=0) then g:=gcdSameVariables(g,flatten(p1,v1),v)
else g:=gcdSameVariables(g,flatten(p1,v1)-flatten(p2,v2),v)
(g = 1) => gcd(c1,c2)::SUPP
(#v1 = 0 or not (p1 exquo g) case "failed") and
(#v2 = 0 or not (p2 exquo g) case "failed")
=> g*gcd(c1,c2)::SUPP -- divdes them both, so is the gcd
v:=variables g -- there can be at most these variables in answer
v1:=setDifference(vp1,v)
if #v1 ^= 0 then
g:=recursivelyGCDCoefficients(g,v,p1,v1)
(g = 1) => return gcd(c1,c2)::SUPP
v:=variables g -- there can be at most these variables in answer
v2:=setDifference(vp2,v)
recursivelyGCDCoefficients(g,v,p2,v2)*gcd(c1,c2)
if R has StepThrough then
randomCount:R := init()
randomR() ==
(v:=nextItem(randomCount)) case R =>
randomCount:=v
v
SAY("Taking next stepthrough range in GeneralPolynomialGcdPackage")$Lisp
randomCount:=init()
randomCount
else
randomR() == (random$Integer() rem 100)::R
---- JHD's local functions ---
gcdSameVariables(p1:SUPP,p2:SUPP,lv:List OV) ==
-- two non-trivial primitive (or, at least, we don't care
-- about content)
-- polynomials with precisely the same degree
#lv = 0 => map((x:R):P+->x::P,gcdPolynomial(map(ground,p1),
map(ground,p2)))
degree p2 = 1 =>
p1 exquo p2 case SUPP => p2
1
gcdLC:=gcd(leadingCoefficient p1,leadingCoefficient p2)
lr:=[randomR() for vv in lv]
count:NonNegativeInteger:=0
while count<10 repeat
while zero? eval(gcdLC,lv,lr) and count<10 repeat
lr:=[randomR() for vv in lv]
count:=count+1
count = 10 => error "too many evaluations in GCD code"
up1:SUPR:=map(y+->ground eval(y,lv,lr),p1)
up2:SUPR:=map(z+->ground eval(z,lv,lr),p2)
u:=gcdPolynomial(up1,up2)
degree u = 0 => return 1
-- let's pick a second one, just to check
lrr:=[randomR() for vv in lv]
while zero? eval(gcdLC,lv,lrr) and count<10 repeat
lrr:=[randomR() for vv in lv]
count:=count+1
count = 10 => error "too many evaluations in GCD code"
vp1:SUPR:=map(x1+->ground eval(x1,lv,lrr),p1)
vp2:SUPR:=map(y1+->ground eval(y1,lv,lrr),p2)
v:=gcdPolynomial(vp1,vp2)
degree v = 0 => return 1
if degree v < degree u then
u:=v
up1:=vp1
up2:=vp2
lr:=lrr
up1:=(up1 exquo u)::SUPR
degree gcd(u,up1) = 0 =>
ans:=lift(u,p1,up1,lv,lr)
ans case SUPP => return ans
"next"
up2:=(up2 exquo u)::SUPR
degree gcd(u,up2) = 0 =>
ans:=lift(u,p2,up2,lv,lr)
ans case SUPP => return ans
"next"
-- so neither cofactor is relatively prime
count:=0
while count < 10 repeat
r:=randomR()
uu:=up1+r*up2
degree gcd(u,uu)=0 =>
ans:= lift(u,p1+r::P *p2,uu,lv,lr)
ans case SUPP => return ans
"next"
error "too many evaluations in GCD code"
count >= 10 => error "too many evaluations in GCD code"
lift(gR:SUPR,p:SUPP,cfR:SUPR,lv:List OV,lr:List R) ==
-- lift the coprime factorisation gR*cfR = (univariate of p)
-- where the variables lv have been evaluated at lr
lcp:=leadingCoefficient p
g:=monomial(lcp,degree gR)+map(x+->x::P,reductum gR)
cf:=monomial(lcp,degree cfR)+map(y+->y::P,reductum cfR)
p:=lcp*p -- impose leaidng coefficient of p on each factor
while lv ^= [] repeat
v:=first lv
r:=first lr
lv:=rest lv
lr:=rest lr
thisp:=map(x1+->eval(x1,lv,lr),p)
d:="max"/[degree(c,v) for c in coefficients p]
prime:=v::P - r::P
pn:=prime
origFactors:=[g,cf]::List SUPP
for n in 1..d repeat
Ecart:=(thisp- g*cf) exquo pn
Ecart case "failed" =>
error "failed lifting in hensel in Complex Polynomial GCD"
zero? Ecart => leave
step:=solveLinearPolynomialEquation(origFactors,
map(x2+->eval(x2,v,r),Ecart::SUPP))
step case "failed" => return "failed"
g:=g+pn*first step
cf:=cf+pn*second step
pn:=pn*prime
thisp ^= g*cf => return "failed"
g
recursivelyGCDCoefficients(g:SUPP,v:List OV,p:SUPP,pv:List OV) ==
mv:=first pv -- take each coefficient w.r.t. mv
pv:=rest pv -- and recurse on pv as necessary
d:="max"/[degree(u,mv) for u in coefficients p]
for i in 0..d repeat
p1:=map(x+->coefficient(x,mv,i),p)
oldg:=g
if pv = [] then g:=gcdSameVariables(g,p1,v)
else g:=recursivelyGCDCoefficients(p,v,p1,pv)
(g = 1) => return 1
g^=oldg =>
oldv:=v
v:=variables g
pv:=setUnion(pv,setDifference(v,oldv))
g
flatten(p1:SUPP,lv:List OV) ==
#lv = 0 => p1
lr:=[ randomR() for vv in lv]
dg:=degree p1
while dg ^= degree (ans:= map(x+->eval(x,lv,lr),p1)) repeat
lr:=[ randomR() for vv in lv]
ans
-- eval(p1:SUPP,lv:List OV,lr:List R) == map(eval(#1,lv,lr),p1)
variables(p1:SUPP) ==
removeDuplicates ("concat"/[variables u for u in coefficients p1])
gcdTrivial(p1:SUPP,p2:SUPP) ==
-- p1 is non-zero, but has degree zero
-- p2 is non-zero
cp1:=leadingCoefficient p1
(cp1 = 1) => 1
degree p2 = 0 => gcd(cp1,leadingCoefficient p2)::SUPP
un?:=unit? cp1
while not zero? p2 and not un? repeat
cp1:=gcd(leadingCoefficient p2,cp1)
un?:=unit? cp1
p2:=reductum p2
un? => 1
cp1::SUPP
---- Local functions ----
--JHD -- test if something wrong happened in the gcd
--JHD failtest(f:P,p1:P,p2:P) : Boolean ==
--JHD (p1 exquo f) case "failed" or (p2 exquo f) case "failed"
--JHD
--JHD -- Choose the integers
--JHD chooseVal(p1:P,p2:P,lvar:List OV):UTerm ==
--JHD x:OV:=lvar.first
--JHD lvr:=lvar.rest
--JHD d1:=degree(p1,x)
--JHD d2:=degree(p2,x)
--JHD dd:NNI:=0$NNI
--JHD nvr:NNI:=#lvr
--JHD lval:List R :=[]
--JHD range:I:=8
--JHD for i in 1.. repeat
--JHD range:=2*range
--JHD lval:=[(random()$I rem (2*range) - range)::R for i in 1..nvr]
--JHD uf1:SUPR:=univariate eval(p1,lvr,lval)
--JHD degree uf1 ^= d1 => "new point"
--JHD uf2:SUPR:=univariate eval(p2,lvr,lval)
--JHD degree uf2 ^= d2 => "new point"
--JHD u:=gcd(uf1,uf2)
--JHD du:=degree u
--JHD --the univariate gcd is 1
--JHD if du=0 then return [[1$SUPR],lval,0$P]$UTerm
--JHD
--JHD ugcd:List SUPR:=[u,(uf1 exquo u)::SUPR,(uf2 exquo u)::SUPR]
--JHD uterm:=[ugcd,lval,0$P]$UTerm
--JHD dd=0 => dd:=du
--JHD
--JHD --the degree is not changed
--JHD du=dd =>
--JHD
--JHD --test if one of the polynomials is the gcd
--JHD dd=d1 =>
--JHD if ^((f:=p2 exquo p1) case "failed") then
--JHD return [[u],lval,p1]$UTerm
--JHD if dd^=d2 then dd:=(dd-1)::NNI
--JHD
--JHD dd=d2 =>
--JHD if ^((f:=p1 exquo p2) case "failed") then
--JHD return [[u],lval,p2]$UTerm
--JHD dd:=(dd-1)::NNI
--JHD return uterm
--JHD
--JHD --the new gcd has degree less
--JHD du<dd => dd:=du
--JHD
--JHD good(f:P,lvr:List OV):Record(upol:SUPR,inval:List R) ==
--JHD nvr:NNI:=#lvr
--JHD range:I:=1
--JHD ltry:List List R:=[]
--JHD while true repeat
--JHD range:=2*range
--JHD lval:=[(random()$I rem (2*range) -range)::R for i in 1..nvr]
--JHD member?(lval,ltry) => "new point"
--JHD ltry:=cons(lval,ltry)
--JHD uf:=univariate eval(f,lvr,lval)
--JHD if degree gcd(uf,differentiate uf)=0 then return [uf,lval]
--JHD
--JHD -- impose the right lc
--JHD imposelc(lipol:List SUPR,
--JHD lvar:List OV,lval:List R,leadc:List P):List SUPR ==
--JHD result:List SUPR :=[]
--JHD lvar:=lvar.rest
--JHD for pol in lipol for leadpol in leadc repeat
--JHD p1:= univariate eval(leadpol,lvar,lval) * pol
--JHD result:= cons((p1 exquo leadingCoefficient pol)::SUPR,result)
--JHD reverse result
--JHD
--JHD --Compute the gcd between not coprime polynomials
--JHD notCoprime(g:P,p2:P,ldeg:List NNI,lvar:List OV) : P ==
--JHD x:OV:=lvar.first
--JHD lvar1:List OV:=lvar.rest
--JHD lg1:=gcdcofact([g,differentiate(g,x)])
--JHD g1:=lg1.1
--JHD lg:LGcd:=localgcd(g1,p2,lvar)
--JHD (l,lval):=(lg.locgcd,lg.goodint)
--JHD p2:=(p2 exquo l)::P
--JHD (gd1,gd2):=(l,l)
--JHD ul:=univariate(eval(l,lvar1,lval))
--JHD dl:=degree ul
--JHD if degree gcd(ul,differentiate ul) ^=0 then
--JHD newchoice:=good(l,lvar.rest)
--JHD ul:=newchoice.upol
--JHD lval:=newchoice.inval
--JHD ug1:=univariate(eval(g1,lvar1,lval))
--JHD ulist:=[ug1,univariate eval(p2,lvar1,lval)]
--JHD lcpol:=[leadingCoefficient univariate(g1,x),
--JHD leadingCoefficient univariate(p2,x)]
--JHD while true repeat
--JHD d:SUPR:=gcd(cons(ul,ulist))
--JHD if degree d =0 then return gd1
--JHD lquo:=(ul exquo d)::SUPR
--JHD if degree lquo ^=0 then
--JHD lgcd:=gcd(cons(leadingCoefficient univariate(l,x),lcpol))
--JHD gd2:=lift(l,d,lquo,lgcd,lvar,ldeg,lval)
--JHD l:=gd2
--JHD ul:=univariate(eval(l,lvar1,lval))
--JHD dl:=degree ul
--JHD gd1:=gd1*gd2
--JHD ulist:=[(uf exquo d)::SUPR for uf in ulist]
--JHD
--JHD -- we suppose that the poly have the same mainvar, deg p1<deg p2 and the
--JHD -- polys primitive
--JHD internal(p1:P,p2:P,x:OV) : P ==
--JHD lvar:List OV:=sort(#1>#2,setUnion(variables p1,variables p2))
--JHD d1:=degree(p1,x)
--JHD d2:=degree(p2,x)
--JHD result: P:=localgcd(p1,p2,lvar).locgcd
--JHD -- special cases
--JHD result=1 => 1$P
--JHD (dr:=degree(result,x))=d1 or dr=d2 => result
--JHD while failtest(result,p1,p2) repeat
--JHD SAY$Lisp "retrying gcd"
--JHD result:=localgcd(p1,p2,lvar).locgcd
--JHD result
--JHD
--JHD --local function for the gcd : it returns the evaluation point too
--JHD localgcd(p1:P,p2:P,lvar:List(OV)) : LGcd ==
--JHD x:OV:=lvar.first
--JHD uterm:=chooseVal(p1,p2,lvar)
--JHD listpol:= uterm.lpol
--JHD ud:=listpol.first
--JHD dd:= degree ud
--JHD
--JHD --the univariate gcd is 1
--JHD dd=0 => [1$P,uterm.lint]$LGcd
--JHD
--JHD --one of the polynomials is the gcd
--JHD dd=degree(p1,x) or dd=degree(p2,x) =>
--JHD [uterm.mpol,uterm.lint]$LGcd
--JHD ldeg:List NNI:=map(min,degree(p1,lvar),degree(p2,lvar))
--JHD
--JHD -- if there is a polynomial g s.t. g/gcd and gcd are coprime ...
--JHD -- I can lift
--JHD (h:=lift?(p1,p2,uterm,ldeg,lvar)) case "failed" =>
--JHD [notCoprime(p1,p2,ldeg,lvar),uterm.lint]$LGcd
--JHD [h::P,uterm.lint]$LGcd
--JHD
--JHD
--JHD -- content, internal functions return the poly if it is a monomial
--JHD monomContent(p:P,var:OV):P ==
--JHD ground? p => 1$P
--JHD md:= minimumDegree(p,var)
--JHD ((var::P)**md)*(gcd sort(better,coefficients univariate(p,var)))
monomContentSup(u:SUPP):SUPP ==
degree(u) = 0$NonNegativeInteger => 1$SUPP
md:= minimumDegree u
gcd(sort(better,coefficients u)) * monomial(1$P,md)$SUPP
--JHD -- change the polynomials to have positive lc
--JHD abs(p:P): P == unitNormal(p).canonical
-- Ordering for gcd purposes
better(p1:P,p2:P):Boolean ==
ground? p1 => true
ground? p2 => false
degree(p1,mainVariable(p1)::OV) < degree(p2,mainVariable(p2)::OV)
-- PRS algorithm
-- gcdPrs(p1:P,p2:P,d:NNI,var:OV):Union(P,"failed") ==
-- u1:= univariate(p1,var)
-- u2:= univariate(p2,var)
-- finished:Boolean:= false
-- until finished repeat
-- dd:NNI:=(degree u1 - degree u2)::NNI
-- lc1:SUPP:=leadingCoefficient u2 * reductum u1
-- lc2:SUPP:=leadingCoefficient u1 * reductum u2
-- u3:SUPP:= primitate((lc1-lc2)*monomial(1$P,dd))$%
-- (d3:=degree(u3)) <= d => finished:= true
-- u1:= u2
-- u2:= u3
-- if d3 > degree(u1) then (u1,u2):= (u2,u1)
-- g:= (u2 exquo u3)
-- g case SUPP => abs multivariate(u3,var)
-- "failed"
-- Gcd between polynomial p1 and p2 with
-- mainVariable p1 < x=mainVariable p2
--JHD gcdTermList(p1:P,p2:P) : P ==
--JHD termList:=sort(better,
--JHD cons(p1,coefficients univariate(p2,(mainVariable p2)::OV)))
--JHD q:P:=termList.first
--JHD for term in termList.rest until q = 1$P repeat q:= gcd(q,term)
--JHD q
--JHD
--JHD -- Gcd between polynomials with the same mainVariable
--JHD gcdSameMainvar(p1:P,p2:P,mvar:OV): P ==
--JHD if degree(p1,mvar) < degree(p2,mvar) then (p1,p2):= (p2,p1)
--JHD (p1 exquo p2) case P => abs p2
--JHD c1:= monomContent(p1,mvar)$%
--JHD c1 = p1 => gcdMonom(p1,p2,mvar)
--JHD c2:= monomContent(p2,mvar)$%
--JHD c2 = p2 => gcdMonom(p2,p1,mvar)
--JHD p1:= (p1 exquo c1)::P
--JHD p2:= (p2 exquo c2)::P
--JHD if degree(p1,mvar) < degree(p2,mvar) then (p1,p2):= (p2,p1)
--JHD (p1 exquo p2) case P => abs(p2) * gcd(c1,c2)
--JHD abs(gcdPrim(p1,p2,mvar)) * gcd(c1,c2)
--JHD
--JHD -- make the polynomial primitive with respect to var
--JHD primitate(p:P,var:OV):P == (p exquo monomContent(p,var))::P
--JHD
--JHD primitate(u:SUPP):SUPP == (u exquo monomContentSup u)::SUPP
--JHD
--JHD -- gcd between primitive polynomials with the same mainVariable
--JHD gcdPrim(p1:P,p2:P,mvar:OV):P ==
--JHD vars:= removeDuplicates append(variables p1,variables p2)
--JHD #vars=1 => multivariate(gcd(univariate p1,univariate p2),mvar)
--JHD vars:=delete(vars,position(mvar,vars))
--JHD --d:= degModGcd(p1,p2,mvar,vars)
--JHD --d case "failed" => internal(p2,p1,mvar)
--JHD --deg:= d:NNI
--JHD --deg = 0$NNI => 1$P
--JHD --deg = degree(p1,mvar) =>
--JHD -- (p2 exquo p1) case P => abs(p1) -- already know that
--JHD -- ^(p1 exquo p2)
--JHD -- internal(p2,p1,mvar)
--JHD --cheapPrs?(p1,p2,deg,mvar) =>
--JHD -- g:= gcdPrs(p1,p2,deg,mvar)
--JHD -- g case P => g::P
--JHD -- internal(p2,p1,mvar)
--JHD internal(p2,p1,mvar)
--JHD
--JHD -- gcd between a monomial and a polynomial
--JHD gcdMonom(m:P,p:P,var:OV):P ==
--JHD ((var::P) ** min(minimumDegree(m,var),minimumDegree(p,var))) *
--JHD gcdTermList(leadingCoefficient(univariate(m,var)),p)
--JHD
--JHD --If there is a pol s.t. pol/gcd and gcd are coprime I can lift
--JHD lift?(p1:P,p2:P,uterm:UTerm,ldeg:List NNI,
--JHD lvar:List OV) : Union("failed",P) ==
--JHD x:OV:=lvar.first
--JHD leadpol:Boolean:=false
--JHD (listpol,lval):=(uterm.lpol,uterm.lint)
--JHD d:=listpol.first
--JHD listpol:=listpol.rest
--JHD nolift:Boolean:=true
--JHD for uf in listpol repeat
--JHD --note uf and d not necessarily primitive
--JHD degree gcd(uf,d) =0 => nolift:=false
--JHD nolift => "failed"
--JHD f:P:=([p1,p2]$List(P)).(position(uf,listpol))
--JHD lgcd:=gcd(leadingCoefficient univariate(p1,x),
--JHD leadingCoefficient univariate(p2,x))
--JHD lift(f,d,uf,lgcd,lvar,ldeg,lval)
--JHD
--JHD -- interface with the general "lifting" function
--JHD lift(f:P,d:SUPR,uf:SUPR,lgcd:P,lvar:List OV,
--JHD ldeg:List NNI,lval:List R):P ==
--JHD x:OV:=lvar.first
--JHD leadpol:Boolean:=false
--JHD lcf:P
--JHD lcf:=leadingCoefficient univariate(f,x)
--JHD df:=degree(f,x)
--JHD leadlist:List(P):=[]
--JHD
--JHD if lgcd^=1$P then
--JHD leadpol:=true
--JHD f:=lgcd*f
--JHD ldeg:=[n0+n1 for n0 in ldeg for n1 in degree(lgcd,lvar)]
--JHD lcd:R:=leadingCoefficient d
--JHD if ground? lgcd then d:=((retract lgcd) *d exquo lcd)::SUPR
--JHD else d:=(retract(eval(lgcd,lvar.rest,lval)) * d exquo lcd)::SUPR
--JHD uf:=lcd*uf
--JHD leadlist:=[lgcd,lcf]
--JHD lg:=imposelc([d,uf],lvar,lval,leadlist)
--JHD plist:=lifting(univariate(f,x),lvar,lg,lval,leadlist,ldeg)::List P
--JHD (p0:P,p1:P):=(plist.first,plist.2)
--JHD if univariate eval(p0,rest lvar,lval) ^= lg.first then
--JHD (p0,p1):=(p1,p0)
--JHD ^leadpol => p0
--JHD cprim:=contprim([p0])
--JHD cprim.first.prim
--JHD
--JHD -- Gcd for two multivariate polynomials
--JHD gcd(p1:P,p2:P) : P ==
--JHD (p1:= abs(p1)) = (p2:= abs(p2)) => p1
--JHD ground? p1 =>
--JHD p1 = 1$P => p1
--JHD p1 = 0$P => p2
--JHD ground? p2 => gcd((retract p1)@R,(retract p2)@R)::P
--JHD gcdTermList(p1,p2)
--JHD ground? p2 =>
--JHD p2 = 1$P => p2
--JHD p2 = 0$P => p1
--JHD gcdTermList(p2,p1)
--JHD mv1:= mainVariable(p1)::OV
--JHD mv2:= mainVariable(p2)::OV
--JHD mv1 = mv2 => gcdSameMainvar(p1,p2,mv1)
--JHD mv1 < mv2 => gcdTermList(p1,p2)
--JHD gcdTermList(p2,p1)
--JHD
--JHD -- Gcd for a list of multivariate polynomials
--JHD gcd(listp:List P) : P ==
--JHD lf:=sort(better,listp)
--JHD f:=lf.first
--JHD for g in lf.rest repeat
--JHD f:=gcd(f,g)
--JHD if f=1$P then return f
--JHD f
--JHD -- Gcd and cofactors for a list of polynomials
--JHD gcdcofact(listp : List P) : List P ==
--JHD h:=gcd listp
--JHD cons(h,[(f exquo h) :: P for f in listp])
--JHD
--JHD -- Gcd for primitive polynomials
--JHD gcdprim(p1:P,p2:P):P ==
--JHD (p1:= abs(p1)) = (p2:= abs(p2)) => p1
--JHD ground? p1 =>
--JHD ground? p2 => gcd((retract p1)@R,(retract p2)@R)::P
--JHD p1 = 0$P => p2
--JHD 1$P
--JHD ground? p2 =>
--JHD p2 = 0$P => p1
--JHD 1$P
--JHD mv1:= mainVariable(p1)::OV
--JHD mv2:= mainVariable(p2)::OV
--JHD mv1 = mv2 =>
--JHD md:=min(minimumDegree(p1,mv1),minimumDegree(p2,mv1))
--JHD mp:=1$P
--JHD if md>1 then
--JHD mp:=(mv1::P)**md
--JHD p1:=(p1 exquo mp)::P
--JHD p2:=(p2 exquo mp)::P
--JHD mp*gcdPrim(p1,p2,mv1)
--JHD 1$P
--JHD
--JHD -- Gcd for a list of primitive multivariate polynomials
--JHD gcdprim(listp:List P) : P ==
--JHD lf:=sort(better,listp)
--JHD f:=lf.first
--JHD for g in lf.rest repeat
--JHD f:=gcdprim(f,g)
--JHD if f=1$P then return f
--JHD f
--JHD -- Gcd and cofactors for a list of primitive polynomials
--JHD gcdcofactprim(listp : List P) : List P ==
--JHD h:=gcdprim listp
--JHD cons(h,[(f exquo h) :: P for f in listp])
--JHD
--JHD -- content of a polynomial (with respect to its main var)
--JHD content(f:P):P ==
--JHD ground? f => f
--JHD x:OV:=(mainVariable f)::OV
--JHD gcd sort(better,coefficients univariate(f,x))
--JHD
--JHD -- contents of a list of polynomials
--JHD content(listf:List P) : List P == [content f for f in listf]
--JHD
--JHD -- contents and primitive parts of a list of polynomials
--JHD contprim(listf:List P) : List ContPrim ==
--JHD prelim :List P := content listf
--JHD [[q,(f exquo q)::P]$ContPrim for q in prelim for f in listf]
--JHD
|