This file is indexed.

/usr/share/axiom-20170501/src/algebra/GENUPS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
)abbrev package GENUPS GenerateUnivariatePowerSeries
++ Author: Clifton J. Williamson
++ Date Created: 29 April 1990
++ Date Last Updated: 31 May 1990
++ Description:
++ \spadtype{GenerateUnivariatePowerSeries} provides functions that create
++ power series from explicit formulas for their \spad{n}th coefficient.

GenerateUnivariatePowerSeries(R,FE) : SIG == CODE where
  R  : Join(IntegralDomain,OrderedSet,RetractableTo Integer,_
            LinearlyExplicitRingOver Integer)
  FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,_
            FunctionSpace R)

  ANY1 ==> AnyFunctions1
  EQ   ==> Equation
  I    ==> Integer
  NNI  ==> NonNegativeInteger
  RN   ==> Fraction Integer
  SEG  ==> UniversalSegment
  ST   ==> Stream
  SY   ==> Symbol
  UTS  ==> UnivariateTaylorSeries
  ULS  ==> UnivariateLaurentSeries
  UPXS ==> UnivariatePuiseuxSeries
 
  SIG ==> with

    taylor : (I -> FE,EQ FE) -> Any
      ++ \spad{taylor(n +-> a(n),x = a)} returns
      ++ \spad{sum(n = 0..,a(n)*(x-a)**n)}.

    taylor : (FE,SY,EQ FE) -> Any
      ++ \spad{taylor(a(n),n,x = a)} returns \spad{sum(n = 0..,a(n)*(x-a)**n)}.

    taylor : (I -> FE,EQ FE,SEG NNI) -> Any
      ++ \spad{taylor(n +-> a(n),x = a,n0..)} returns
      ++ \spad{sum(n=n0..,a(n)*(x-a)**n)};
      ++ \spad{taylor(n +-> a(n),x = a,n0..n1)} returns
      ++ \spad{sum(n = n0..,a(n)*(x-a)**n)}.

    taylor : (FE,SY,EQ FE,SEG NNI) -> Any
      ++ \spad{taylor(a(n),n,x = a,n0..)} returns
      ++ \spad{sum(n = n0..,a(n)*(x-a)**n)};
      ++ \spad{taylor(a(n),n,x = a,n0..n1)} returns
      ++ \spad{sum(n = n0..,a(n)*(x-a)**n)}.
 
    laurent : (I -> FE,EQ FE,SEG I) -> Any
      ++ \spad{laurent(n +-> a(n),x = a,n0..)} returns
      ++ \spad{sum(n = n0..,a(n) * (x - a)**n)};
      ++ \spad{laurent(n +-> a(n),x = a,n0..n1)} returns
      ++ \spad{sum(n = n0..n1,a(n) * (x - a)**n)}.

    laurent : (FE,SY,EQ FE,SEG I) -> Any
      ++ \spad{laurent(a(n),n,x=a,n0..)} returns
      ++ \spad{sum(n = n0..,a(n) * (x - a)**n)};
      ++ \spad{laurent(a(n),n,x=a,n0..n1)} returns
      ++ \spad{sum(n = n0..n1,a(n) * (x - a)**n)}.
 
    puiseux : (RN -> FE,EQ FE,SEG RN,RN) -> Any
      ++ \spad{puiseux(n +-> a(n),x = a,r0..,r)} returns
      ++ \spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)};
      ++ \spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns
      ++ \spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.

    puiseux : (FE,SY,EQ FE,SEG RN,RN) -> Any
      ++ \spad{puiseux(a(n),n,x = a,r0..,r)} returns
      ++ \spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)};
      ++ \spad{puiseux(a(n),n,x = a,r0..r1,r)} returns
      ++ \spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.
 
    series : (I -> FE,EQ FE) -> Any
      ++ \spad{series(n +-> a(n),x = a)} returns
      ++ \spad{sum(n = 0..,a(n)*(x-a)**n)}.

    series : (FE,SY,EQ FE) -> Any
      ++ \spad{series(a(n),n,x = a)} returns
      ++ \spad{sum(n = 0..,a(n)*(x-a)**n)}.

    series : (I -> FE,EQ FE,SEG I) -> Any
      ++ \spad{series(n +-> a(n),x = a,n0..)} returns
      ++ \spad{sum(n = n0..,a(n) * (x - a)**n)};
      ++ \spad{series(n +-> a(n),x = a,n0..n1)} returns
      ++ \spad{sum(n = n0..n1,a(n) * (x - a)**n)}.

    series : (FE,SY,EQ FE,SEG I) -> Any
      ++ \spad{series(a(n),n,x=a,n0..)} returns
      ++ \spad{sum(n = n0..,a(n) * (x - a)**n)};
      ++ \spad{series(a(n),n,x=a,n0..n1)} returns
      ++ \spad{sum(n = n0..n1,a(n) * (x - a)**n)}.

    series : (RN -> FE,EQ FE,SEG RN,RN) -> Any
      ++ \spad{series(n +-> a(n),x = a,r0..,r)} returns
      ++ \spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)};
      ++ \spad{series(n +-> a(n),x = a,r0..r1,r)} returns
      ++ \spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.

    series : (FE,SY,EQ FE,SEG RN,RN) -> Any
      ++ \spad{series(a(n),n,x = a,r0..,r)} returns
      ++ \spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)};
      ++ \spad{series(a(n),n,x = a,r0..r1,r)} returns
      ++ \spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.
 
  CODE ==> add
 
    genStream: (I -> FE,I) -> ST FE
    genStream(f,n) == delay concat(f(n),genStream(f,n + 1))
 
    genFiniteStream: (I -> FE,I,I) -> ST FE
    genFiniteStream(f,n,m) == delay
      n > m => empty()
      concat(f(n),genFiniteStream(f,n + 1,m))
 
    taylor(f,eq) ==
      (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" =>
        error "taylor: left hand side must be a variable"
      x := xx :: SY; a := rhs eq
      coerce(series(genStream(f,0))$UTS(FE,x,a))$ANY1(UTS(FE,x,a))
 
    taylor(an:FE,n:SY,eq:EQ FE) ==
      taylor((i:I):FE +-> eval(an,(n::FE) = (i::FE)),eq)
 
    taylor(f:I -> FE,eq:EQ FE,seg:SEG NNI) ==
      (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" =>
        error "taylor: left hand side must be a variable"
      x := xx :: SY; a := rhs eq
      hasHi seg =>
        n0 := lo seg; n1 := hi seg
        if n1 < n0 then (n0,n1) := (n1,n0)
        uts := series(genFiniteStream(f,n0,n1))$UTS(FE,x,a)
        uts := uts * monomial(1,n0)$UTS(FE,x,a)
        coerce(uts)$ANY1(UTS(FE,x,a))
      n0 := lo seg
      uts := series(genStream(f,n0))$UTS(FE,x,a)
      uts := uts * monomial(1,n0)$UTS(FE,x,a)
      coerce(uts)$ANY1(UTS(FE,x,a))
 
    taylor(an,n,eq,seg) ==
      taylor((i:I):FE +-> eval(an,(n::FE) = (i::FE)),eq,seg)
 
    laurent(f,eq,seg) ==
      (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" =>
        error "taylor: left hand side must be a variable"
      x := xx :: SY; a := rhs eq
      hasHi seg =>
        n0 := lo seg; n1 := hi seg
        if n1 < n0 then (n0,n1) := (n1,n0)
        uts := series(genFiniteStream(f,n0,n1))$UTS(FE,x,a)
        coerce(laurent(n0,uts)$ULS(FE,x,a))$ANY1(ULS(FE,x,a))
      n0 := lo seg
      uts := series(genStream(f,n0))$UTS(FE,x,a)
      coerce(laurent(n0,uts)$ULS(FE,x,a))$ANY1(ULS(FE,x,a))
 
    laurent(an,n,eq,seg) ==
      laurent((i:I):FE +-> eval(an,(n::FE) = (i::FE)),eq,seg)
 
    modifyFcn:(RN -> FE,I,I,I,I) -> FE
    modifyFcn(f,n0,nn,q,m) == (zero?((m - n0) rem nn) => f(m/q); 0)
 
    puiseux(f,eq,seg,r) ==
      (xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" =>
        error "puiseux: left hand side must be a variable"
      x := xx :: SY; a := rhs eq
      not positive? r => error "puiseux: last argument must be positive"
      hasHi seg =>
        r0 := lo seg; r1 := hi seg
        if r1 < r0 then (r0,r1) := (r1,r0)
        p0 := numer r0; q0 := denom r0
        p1 := numer r1; q1 := denom r1
        p2 := numer r; q2 := denom r
        q := lcm(lcm(q0,q1),q2)
        n0 := p0 * (q quo q0); n1 := p1 * (q quo q1)
        nn := p2 * (q quo q2)
        ulsUnion := 
          laurent((i:I):FE+->modifyFcn(f,n0,nn,q,i),eq,segment(n0,n1))
        uls := retract(ulsUnion)$ANY1(ULS(FE,x,a))
        coerce(puiseux(1/q,uls)$UPXS(FE,x,a))$ANY1(UPXS(FE,x,a))
      p0 := numer(r0 := lo seg); q0 := denom r0
      p2 := numer r; q2 := denom r
      q := lcm(q0,q2)
      n0 := p0 * (q quo q0); nn := p2 * (q quo q2)
      ulsUnion := 
        laurent((i:I):FE+->modifyFcn(f,n0,nn,q,i),eq,segment n0)
      uls := retract(ulsUnion)$ANY1(ULS(FE,x,a))
      coerce(puiseux(1/q,uls)$UPXS(FE,x,a))$ANY1(UPXS(FE,x,a))
 
    puiseux(an,n,eq,r0,m) ==
      puiseux((r:RN):FE+->eval(an,(n::FE) = (r::FE)),eq,r0,m)
 
    series(f:I -> FE,eq:EQ FE) == puiseux(r+->f(numer r),eq,segment 0,1)
    series(an:FE,n:SY,eq:EQ FE) == puiseux(an,n,eq,segment 0,1)
    series(f:I -> FE,eq:EQ FE,seg:SEG I) ==
      ratSeg : SEG RN := map(x+->x::RN,seg)$UniversalSegmentFunctions2(I,RN)
      puiseux((r:RN):FE+->f(numer r),eq,ratSeg,1)
    series(an:FE,n:SY,eq:EQ FE,seg:SEG I) ==
      ratSeg : SEG RN := map(i+->i::RN,seg)$UniversalSegmentFunctions2(I,RN)
      puiseux(an,n,eq,ratSeg,1)
    series(f:RN -> FE,eq:EQ FE,seg:SEG RN,r:RN) == puiseux(f,eq,seg,r)
    series(an:FE,n:SY,eq:EQ FE,seg:SEG RN,r:RN) == puiseux(an,n,eq,seg,r)