This file is indexed.

/usr/share/axiom-20170501/src/algebra/GHENSEL.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
)abbrev package GHENSEL GeneralHenselPackage
++ Author : P.Gianni
++ Description:
++ General Hensel Lifting
++ Used for Factorization of bivariate polynomials over a finite field.

GeneralHenselPackage(RP,TP) : SIG == CODE where
  RP : EuclideanDomain
  TP : UnivariatePolynomialCategory RP

  PI ==> PositiveInteger

  SIG ==> with

    HenselLift : (TP,List(TP),RP,PI) -> Record(plist:List(TP), modulo:RP)
      ++ HenselLift(pol,lfacts,prime,bound) lifts lfacts, 
      ++ that are the factors of pol mod prime,
      ++ to factors of pol mod prime**k > bound. No recombining is done .

    completeHensel : (TP,List(TP),RP,PI) -> List TP
      ++ completeHensel(pol,lfact,prime,bound) lifts lfact, 
      ++ the factorization mod prime of pol,
      ++ to the factorization mod prime**k>bound. 
      ++ Factors are recombined on the way.
  
    reduction : (TP,RP) -> TP 
      ++ reduction(u,pol) computes the symmetric reduction of u mod pol

  CODE ==> add

     GenExEuclid: (List(FP),List(FP),FP) -> List(FP)
     HenselLift1: (TP,List(TP),List(FP),List(FP),RP,RP,F) -> List(TP)
     mQuo: (TP,RP) -> TP

     reduceCoef(c:RP,p:RP):RP ==
        zero? p => c
        RP is Integer => symmetricRemainder(c,p)
        c rem p

     reduction(u:TP,p:RP):TP ==
        zero? p => u
        RP is Integer => map(x+->symmetricRemainder(x,p),u)
        map(x+->x rem p,u)

     merge(p:RP,q:RP):Union(RP,"failed") ==
         p = q => p
         p = 0 => q
         q = 0 => p
         "failed"

     modInverse(c:RP,p:RP):RP ==
        (extendedEuclidean(c,p,1)::Record(coef1:RP,coef2:RP)).coef1

     exactquo(u:TP,v:TP,p:RP):Union(TP,"failed") ==
        invlcv:=modInverse(leadingCoefficient v,p)
        r:=monicDivide(u,reduction(invlcv*v,p))
        reduction(r.remainder,p) ^=0 => "failed"
        reduction(invlcv*r.quotient,p)

     FP:=EuclideanModularRing(RP,TP,RP,reduction,merge,exactquo)

     mQuo(poly:TP,n:RP) : TP == map(x+->x quo n,poly)

     GenExEuclid(fl:List FP,cl:List FP,rhs:FP) :List FP ==
        [clp*rhs rem flp for clp in cl for flp in fl]

     -- generate the possible factors
     genFact(fln:List TP,factlist:List List TP) : List List TP ==
       factlist=[] => [[pol] for pol in fln]
       maxd := +/[degree f for f in fln] quo 2
       auxfl:List List TP := []
       for poly in fln while factlist^=[] repeat
         factlist := [term for term in factlist | ^member?(poly,term)]
         dp := degree poly
         for term in factlist repeat
           (+/[degree f for f in term]) + dp > maxd => "next term"
           auxfl := cons(cons(poly,term),auxfl)
       auxfl

     HenselLift1(poly:TP,fln:List TP,fl1:List FP,cl1:List FP,
                 prime:RP,Modulus:RP,cinv:RP):List TP ==
        lcp := leadingCoefficient poly
        rhs := reduce(mQuo(poly - lcp * */fln,Modulus),prime)
        zero? rhs => fln
        lcinv:=reduce(cinv::TP,prime)
        vl := GenExEuclid(fl1,cl1,lcinv*rhs)
        [flp + Modulus*(vlp::TP) for flp in fln for vlp in vl]

     HenselLift(poly:TP,tl1:List TP,prime:RP,bound:PI) ==
        -- convert tl1
        constp:TP:=0
        if degree first tl1 = 0 then
           constp:=tl1.first
           tl1 := rest tl1
        fl1:=[reduce(ttl,prime) for ttl in tl1]
        cl1 := multiEuclidean(fl1,1)::List FP
        Modulus:=prime
        fln :List TP := [ffl1::TP for ffl1 in fl1]
        lcinv:RP:=retract((inv
                  (reduce((leadingCoefficient poly)::TP,prime)))::TP)
        while euclideanSize(Modulus)<bound repeat
           nfln:=HenselLift1(poly,fln,fl1,cl1,prime,Modulus,lcinv)
           fln = nfln and zero?(err:=poly-*/fln) => leave "finished"
           fln := nfln
           Modulus := prime*Modulus
        if constp^=0 then fln:=cons(constp,fln)
        [fln,Modulus]

     completeHensel(m:TP,tl1:List TP,prime:RP,bound:PI) ==
      hlift:=HenselLift(m,tl1,prime,bound)
      Modulus:RP:=hlift.modulo
      fln:List TP:=hlift.plist
      nm := degree m
      u:Union(TP,"failed")
      aux,auxl,finallist:List TP
      auxfl,factlist:List List TP
      factlist := []
      dfn :NonNegativeInteger := nm
      lcm1 := leadingCoefficient m
      mm := lcm1*m
      while dfn>0 and (factlist := genFact(fln,factlist))^=[] repeat
        auxfl := []
        while factlist^=[] repeat
          auxl := factlist.first
          factlist := factlist.rest
          tc := reduceCoef((lcm1 * */[coefficient(poly,0)
                          for poly in auxl]), Modulus)
          coefficient(mm,0) exquo tc case "failed" =>
            auxfl := cons(auxl,auxfl)
          pol := */[poly for poly in auxl]
          poly :=reduction(lcm1*pol,Modulus)
          u := mm exquo poly
          u case "failed"  => auxfl := cons(auxl,auxfl)
          poly1: TP := primitivePart poly
          m := mQuo((u::TP),leadingCoefficient poly1)
          lcm1 := leadingCoefficient(m)
          mm := lcm1*m
          finallist := cons(poly1,finallist)
          dfn := degree m
          aux := []
          for poly in fln repeat
            ^member?(poly,auxl) => aux := cons(poly,aux)
            auxfl := [term for term in auxfl | ^member?(poly,term)]
            factlist := [term for term in factlist |^member?(poly,term)]
          fln := aux
        factlist := auxfl
      if dfn > 0 then finallist := cons(m,finallist)
      finallist