/usr/share/axiom-20170501/src/algebra/GPAFF.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 | )abbrev package GPAFF GeneralPackageForAlgebraicFunctionField
++ Author: Gaetan Hache
++ Date created: June 1995
++ Date Last Updated: May 2010 by Tim Daly
++ References:
++ Hach95 Effective construction of algebraic geometry codes
++ Walk78 Algebraic Curves
++ Vogl07 Genus of a Plane Curve
++ Fult08 Algebraic Curves: An Introduction to Algebraic Geometry
++ Description:
++ A package that implements the Brill-Noether algorithm. Part of the
++ PAFF package.
GeneralPackageForAlgebraicFunctionField(K, symb, PolyRing, E, ProjPt,
PCS, Plc, DIVISOR, InfClsPoint, DesTree, BLMET) : SIG == CODE where
K : Field
symb : List(Symbol)
OV ==> OrderedVariableList(symb)
E : DirectProductCategory(#symb,NonNegativeInteger)
PolyRing : PolynomialCategory(K,E,OV)
ProjPt : ProjectiveSpaceCategory(K)
PCS : LocalPowerSeriesCategory(K)
Plc : PlacesCategory(K,PCS)
DIVISOR : DivisorCategory(Plc)
InfClsPoint : InfinitlyClosePointCategory(K,symb,PolyRing,E,ProjPt,_
PCS,Plc,DIVISOR,BLMET)
DesTree : DesingTreeCategory(InfClsPoint)
BLMET : BlowUpMethodCategory
FRACPOLY ==> Fraction PolyRing
OF ==> OutputForm
INT ==> Integer
NNI ==> NonNegativeInteger
PI ==> PositiveInteger
UP ==> UnivariatePolynomial
UPZ ==> UP(t, Integer)
UTSZ ==> UnivariateTaylorSeriesCZero(Integer,t)
SUP ==> SparseUnivariatePolynomial
PPFC1 ==> PolynomialPackageForCurve(K,PolyRing,E,#symb,ProjPt)
ParamPackFC ==> LocalParametrizationOfSimplePointPackage(K,symb,PolyRing,_
E,ProjPt,PCS,Plc)
ParamPack ==> ParametrizationPackage(K,symb,PolyRing,E,ProjPt,PCS,Plc)
RatSingPack ==> ProjectiveAlgebraicSetPackage(K,symb,PolyRing,E,ProjPt)
IntDivPack ==> IntersectionDivisorPackage(K,symb,PolyRing,E,ProjPt,PCS,_
Plc,DIVISOR,InfClsPoint,DesTree,BLMET)
IntFrmPack ==> InterpolateFormsPackage(K,symb,PolyRing,E,ProjPt,PCS,_
Plc,DIVISOR)
DesTrPack ==> DesingTreePackage(K,symb,PolyRing,E,ProjPt,PCS,_
Plc,DIVISOR,InfClsPoint,DesTree,BLMET)
PackPoly ==> PackageForPoly(K,PolyRing,E,#symb)
SIG ==> with
reset : () -> Void
setCurve : PolyRing -> PolyRing
++ setCurve sets the defining polynomial
homogenize : (PolyRing,Integer) -> PolyRing
printInfo : List Boolean -> Void
++ printInfo(lbool) prints some information comming from various
++ package and domain used by this package.
theCurve : () -> PolyRing
++ theCurve returns the specified polynomial for the package.
genus : () -> NNI
++ genus returns the genus of the curve defined by the polynomial
++ given to the package.
genusNeg : () -> INT
desingTree : () -> List DesTree
++ desingTree returns the desingularisation trees at all singular
++ points of the curve defined by the polynomial given to the package.
desingTreeWoFullParam : () -> List DesTree
++ desingTreeWoFullParam returns the desingularisation trees at all
++ singular points of the curve defined by the polynomial given to
++ the package. The local parametrizations are not computed.
setSingularPoints : List ProjPt -> List ProjPt
++ setSingularPoints(lpt) sets the singular points to be used.
++ Beware: no attempt is made to check if the points are singular
++ or not, nor if all of the singular points are presents. Hence,
++ results of some computation maybe false. It is intend to be use
++ when one want to compute the singular points are computed by other
++ means than to use the function singularPoints.
singularPoints : () -> List(ProjPt)
++ singularPoints() returns the singular points of the
++ curve defined by the polynomial given to the package.
++ If the singular points lie in an extension of the specified ground
++ field an error message is issued specifying the extension degree
++ needed to find all singular points.
parametrize : (PolyRing,Plc) -> PCS
++ parametrize(f,pl) returns a local parametrization of f at the place
++ pl.
lBasis : DIVISOR -> Record(num:List PolyRing, den: PolyRing)
++ lBasis computes a basis associated to the specified divisor
findOrderOfDivisor : (DIVISOR,Integer,Integer) -> _
Record(ord:Integer,num:PolyRing,den:PolyRing,upTo:Integer)
interpolateForms : (DIVISOR,NNI) -> List(PolyRing)
++ interpolateForms(d,n) returns a basis of the interpolate forms of
++ degree n of the divisor d.
interpolateFormsForFact : (DIVISOR,List PolyRing) -> List(PolyRing)
eval : (PolyRing,Plc) -> K
++ eval(f,pl) evaluate f at the place pl.
eval : (PolyRing,PolyRing,Plc) -> K
++ eval(f,g,pl) evaluate the function f/g at the place pl.
eval : (FRACPOLY,Plc) -> K
++ eval(u,pl) evaluate the function u at the place pl.
evalIfCan : (PolyRing,Plc) -> Union(K,"failed")
++ evalIfCan(f,pl) evaluate f at the place pl
++ (returns "failed" if it is a pole).
evalIfCan : (PolyRing,PolyRing,Plc) -> Union(K,"failed")
++ evalIfCan(f,g,pl) evaluate the function f/g at the place pl
++ (returns "failed" if it is a pole).
evalIfCan : (FRACPOLY,Plc) -> Union(K,"failed")
++ evalIfCan(u,pl) evaluate the function u at the place pl
++ (returns "failed" if it is a pole).
intersectionDivisor : PolyRing -> DIVISOR
++ intersectionDivisor(pol) compute the intersection divisor
++ (the Cartier divisor) of the form pol with the curve. If some
++ intersection points lie in an extension of the ground field,
++ an error message is issued specifying the extension degree
++ needed to find all the intersection points.
++ (If pol is not homogeneous an error message is issued).
adjunctionDivisor : () -> DIVISOR
++ adjunctionDivisor computes the adjunction divisor of the plane
++ curve given by the polynomial crv.
placesAbove : ProjPt -> List Plc
pointDominateBy : Plc -> ProjPt
++ pointDominateBy(pl) returns the projective point dominated
++ by the place pl.
if K has Finite then --should we say LocallyAlgebraicallyClosedField??
rationalPlaces : () -> List Plc
++ rationalPlaces returns all the rational places of the
++ curve defined by the polynomial given to the package.
rationalPoints : () -> List(ProjPt)
LPolynomial : () -> SparseUnivariatePolynomial Integer
++ LPolynomial() returns the L-Polynomial of the curve.
LPolynomial : PI -> SparseUnivariatePolynomial Integer
++ LPolynomial(d) returns the L-Polynomial of the curve in
++ constant field extension of degree d.
classNumber : () -> Integer
++ classNumber() returns the class number of the curve.
placesOfDegree : PI -> List Plc
++ placesOfDegree(d) returns all places of degree d of the
++ curve.
numberOfPlacesOfDegree : PI -> Integer
++ numberOfPlacesOfDegree(pi) returns the number of places
++ of the given degree
numberRatPlacesExtDeg : PI -> Integer
++ numberRatPlacesExtDeg(n) returns the number of rational
++ places in the constant field extenstion of degree n
numberPlacesDegExtDeg : (PI, PI) -> Integer
++ numberPlacesDegExtDeg(d, n) returns the number of
++ places of degree d in the constant field extension of
++ degree n
ZetaFunction : () -> UTSZ
++ ZetaFunction() returns the Zeta function of the curve.
++ Calculated by using the L-Polynomial
ZetaFunction : PI -> UTSZ
++ ZetaFunction(pi) returns the Zeta function of the curve in
++ constant field extension. Calculated by using the L-Polynomial
CODE ==> add
import PPFC1
import PPFC2
import DesTrPack
import IntFrmPack
import IntDivPack
import RatSingPack
import ParamPack
import ParamPackFC
import PackPoly
crvLocal:PolyRing:=1$PolyRing
-- flags telling such and such is already computed.
genusCalc?:Boolean:= false()$Boolean
theGenus:INT:=0
desingTreeCalc?:Boolean:=false()$Boolean
theTree:List DesTree := empty()
desingTreeWoFullParamCalc?:Boolean:=false()$Boolean
adjDivCalc?:Boolean:=false()$Boolean
theAdjDiv:DIVISOR:=0
singularPointsCalc?:Boolean:=false()$Boolean
lesPtsSing:List(ProjPt):=empty()
rationalPointsCalc?:Boolean:=false()$Boolean
lesRatPts:List(ProjPt):=empty()
rationalPlacesCalc?:Boolean:=false()$Boolean
lesRatPlcs:List(Plc):=empty()
zf:UTSZ:=1$UTSZ
zfCalc : Boolean := false()$Boolean
DegOfPlacesFound: List Integer := empty()
-- see package IntersectionDivisorPackage
intersectionDivisor(pol)==
if ^(pol =$PolyRing homogenize(pol,1)) then _
error _
"From intersectionDivisor: the input is NOT a homogeneous polynomial"
intersectionDivisor(pol,theCurve(),desingTree(),singularPoints())
lBasis(divis)==
d:=degree divis
d < 0 => [[0$PolyRing],1$PolyRing]
A:=adjunctionDivisor()
-- modifie le 08/05/97: avant c'etait formToInterp:=divOfZero(divis) + A
formToInterp:= divOfZero(divis + A)
degDpA:=degree formToInterp
degCrb:=totalDegree(theCurve())$PackPoly
dd:=divide(degDpA,degCrb pretend Integer)
dmin:NNI:=
if ^zero?(dd.remainder) then (dd.quotient+1) pretend NNI
else dd.quotient pretend NNI
print("Trying to interpolate with forms of degree:"::OF)
print(dmin::OF)
lg0:List PolyRing:=interpolateForms(formToInterp,dmin)
while zero?(first lg0) repeat
dmin:=dmin+1
print("Trying to interpolate with forms of degree:"::OF)
print(dmin::OF)
lg0:=interpolateForms(formToInterp,dmin)
print("Denominator found"::OF)
g0:PolyRing:=first lg0
dg0:=intersectionDivisor(g0)
print("Intersection Divisor of Denominator found"::OF)
lnumer:List PolyRing:=interpolateForms(dg0-divis,dmin)
[lnumer,g0]
genus==
if ^(genusCalc?) then
degCrb:=totalDegree(theCurve())$PackPoly
theGenus:=genusTreeNeg(degCrb,desingTreeWoFullParam())
genusCalc?:=true()$Boolean
theGenus < 0 =>
print(("Too many infinitly near points")::OF)
print(("The curve may not be absolutely irreducible")::OF)
error "Have a nice day"
theGenus pretend NNI
genusNeg==
if ^(genusCalc?) then
degCrb:=totalDegree(theCurve())$PackPoly
theGenus:=genusTreeNeg(degCrb,desingTreeWoFullParam())
genusCalc?:=true()$Boolean
theGenus
homogenize(pol,n)== homogenize(pol,n)$PackPoly
fPl(pt:ProjPt,desTr:DesTree):Boolean ==
nd:=value desTr
lpt:=pointV nd
pt = lpt
placesAbove(pt)==
-- verifie si le point est simple, si c'est le cas,
-- on retourne la place correpondante
-- avec pointToPlace qui cre' la place si necessaire.
^member?(pt,singularPoints()) => _
[pointToPlace(pt,theCurve())$ParamPackFC]
-- les quatres lignes suivantes trouvent les feuilles qui
-- sont au-dessus du point.
theTree:= desingTree()
cTree:= find(fPl(pt,#1),theTree)
cTree case "failed" => error "Big error in placesAbove"
-- G. Hache, gaetan.hache@inria.fr"
lvs:=leaves cTree
-- retourne les places correspondant aux feuilles en "consultant"
-- les diviseurs exceptionnels.
concat [supp excpDivV(l) for l in lvs]
pointDominateBy(pl)== pointDominateBy(pl)$ParamPackFC
reduceForm(p1:PolyRing,p2:PolyRing):PolyRing==
normalForm(p1,[p2])$GroebnerPackage(K,E,OV,PolyRing)
evalIfCan(f:PolyRing,pl:Plc)==
u:=reduceForm(f, theCurve() )
zero?(u) => 0
pf:= parametrize(f,pl)
ord:INT:=order pf
ord < 0 => "failed"
ord > 0 => 0
coefOfFirstNonZeroTerm pf
eval(f:PolyRing,pl:Plc)==
eic:=evalIfCan(f,pl)
eic case "failed" => _
error "From eval (function at place): its a pole !!!"
eic
setCurve(pol)==
crvLocal:=pol
^(crvLocal =$PolyRing homogenize(crvLocal,1)) =>
print(("the defining polynomial is not homogeneous")::OF)
error "Have a nice day"
reset()
theCurve()
reset ==
setFoundPlacesToEmpty()$Plc
genusCalc?:Boolean:= false()$Boolean
theGenus:INT:=0
desingTreeCalc?:Boolean:=false()$Boolean
desingTreeWoFullParamCalc?:Boolean:=false()$Boolean
theTree:List DesTree := empty()
adjDivCalc?:Boolean:=false()$Boolean
theAdjDiv:DIVISOR:=0
singularPointsCalc?:Boolean:=false()$Boolean
lesPtsSing:List(ProjPt):=empty()
rationalPointsCalc?:Boolean:=false()$Boolean
lesRatPts:List(ProjPt):=empty()
rationalPlacesCalc?:Boolean:=false()$Boolean
lesRatPlcs:List(Plc):=empty()
DegOfPlacesFound: List Integer := empty()
zf:UTSZ:=1$UTSZ
zfCalc:Boolean := false$Boolean
foundPlacesOfDeg?(i:PositiveInteger):Boolean ==
ld: List Boolean := [zero?(a rem i) for a in DegOfPlacesFound]
entry?(true$Boolean,ld)
findOrderOfDivisor(divis,lb,hb) ==
^zero?(degree divis) => error("The divisor is NOT of degre zero !!!!")
A:=adjunctionDivisor()
formToInterp:=divOfZero ( hb*divis + A )
degDpA:=degree formToInterp
degCrb:=totalDegree( theCurve())$PackPoly
dd:=divide(degDpA,degCrb pretend Integer)
dmin:NNI:=
if ^zero?(dd.remainder) then (dd.quotient+1) pretend NNI
else dd.quotient pretend NNI
lg0:List PolyRing:=interpolateForms(formToInterp,dmin)
while zero?(first lg0) repeat
dmin:=dmin+1
lg0:=interpolateForms(formToInterp,dmin)
g0:PolyRing:=first lg0
dg0:=intersectionDivisor(g0)
nhb:=hb
while effective?(dg0 - nhb*divis - A) repeat
nhb:=nhb+1
nhb:=nhb-1
ftry:=lb
lnumer:List PolyRing:=interpolateForms(dg0-ftry*divis,dmin)
while zero?(first lnumer) and ftry < nhb repeat
ftry:=ftry + 1
lnumer:List PolyRing:=interpolateForms(dg0-ftry*divis,dmin)
[ftry,first lnumer,g0,nhb]
theCurve==
one?(crvLocal) => error "The defining polynomial has not been set yet!"
crvLocal
printInfo(lbool)==
printInfo(lbool.2)$ParamPackFC
printInfo(lbool.3)$PCS
void()
desingTree==
theTree:= desingTreeWoFullParam()
if ^(desingTreeCalc?) then
for arb in theTree repeat
fullParamInit(arb)
desingTreeCalc?:=true()$Boolean
theTree
desingTreeWoFullParam==
if ^(desingTreeWoFullParamCalc?) then
theTree:=[desingTreeAtPoint(pt,theCurve()) for pt in singularPoints()]
desingTreeWoFullParamCalc?:=true()$Boolean
theTree
-- compute the adjunction divisor of the curve using adjunctionDivisor
-- from DesingTreePackage
adjunctionDivisor()==
if ^(adjDivCalc?) then
theAdjDiv:=_
reduce("+",[adjunctionDivisor(tr) for tr in desingTree()],0$DIVISOR)
adjDivCalc?:=true()$Boolean
theAdjDiv
-- returns the singular points using the function singularPoints
-- from ProjectiveAlgebraicSetPackage
singularPoints==
if ^(singularPointsCalc?) then
lesPtsSing:=singularPoints(theCurve())
singularPointsCalc?:=true()$Boolean
lesPtsSing
setSingularPoints(lspt)==
singularPointsCalc?:=true()$Boolean
lesPtsSing:= lspt
-- returns the rational points using the function rationalPoints
-- from ProjectiveAlgebraicSetPackage
-- compute the local parametrization of f at the place pl
-- (from package ParametrizationPackage)
parametrize(f,pl)==parametrize(f,pl)$ParamPack
-- compute the interpolating forms (see package InterpolateFormsPackage)
interpolateForms(d,n)==
lm:List PolyRing:=listAllMono(n)$PackPoly
interpolateForms(d,n,theCurve(),lm)
interpolateFormsForFact(d,lm)==
interpolateFormsForFact(d,lm)$IntFrmPack
evalIfCan(f:PolyRing,g:PolyRing,pl:Plc)==
fu:=reduceForm(f,theCurve())
gu:=reduceForm(g,theCurve())
zero?(fu) and ^zero?(gu) => 0
^zero?(fu) and zero?(gu) => "failed"
pf:= parametrize(fu,pl)
pg:= parametrize(gu,pl)
ordf:INT:=order pf
ordg:INT:=order pg
cf:=coefOfFirstNonZeroTerm pf
cg:=coefOfFirstNonZeroTerm pg
(ordf - ordg) < 0 => "failed"
(ordf - ordg) > 0 => 0
cf * inv cg
eval(f:PolyRing,g:PolyRing,pl:Plc)==
eic:=evalIfCan(f,g,pl)
eic case "failed" => error "From eval (function at place): its a pole"
eic
evalIfCan(u:FRACPOLY,pl:Plc)==
f:PolyRing := numer u
g:PolyRing := denom u
evalIfCan(f,g,pl)
eval(u:FRACPOLY,pl:Plc)==
f:PolyRing := numer u
g:PolyRing := denom u
eval(f,g,pl)
thedeg:PI := 1
crap(p:Plc):Boolean ==
degree(p)$Plc = thedeg
if K has Finite then
rationalPlaces ==
K has PseudoAlgebraicClosureOfFiniteFieldCategory => _
placesOfDegree(1$PI)
--non good pour LACF !!!!
rationalPlacesCalc? => lesRatPlcs
ltr:List(DesTree):=desingTree()
ratP:List(ProjPt):=rationalPoints()
singP:List(ProjPt):=singularPoints()
simRatP:List(ProjPt):=setDifference(ratP,singP)
for pt in simRatP repeat
pointToPlace(pt,theCurve())$ParamPackFC
rationalPlacesCalc? := true()$Boolean
lesRatPlcs:=foundPlaces()$Plc
lesRatPlcs
rationalPoints==
if ^(rationalPointsCalc?) then
if K has Finite then
lesRatPts:= rationalPoints(theCurve(),1)$RatSingPack
rationalPointsCalc?:=true()$Boolean
else
error "Can't find rationalPoints when the field is not finite"
lesRatPts
ZetaFunction() ==
if not zfCalc then
zf:= ZetaFunction(1)
zfCalc:= true$Boolean
zf
ZetaFunction(d) ==
lp:= LPolynomial(d)
if K has PseudoAlgebraicClosureOfFiniteFieldCategory then
setTower!(1$K)
q:INT := size()$K ** d
lpt:UPZ := unmakeSUP(lp)$UPZ
lps:UTSZ := coerce(lpt)$UTSZ
x:= monomial(1,1)$UTSZ
mul: UTSZ := (1-x)*(1 - q * x)
invmul:Union(UTSZ,"failed") := recip(mul)$UTSZ
ivm: UTSZ
if not (invmul case "failed") then
ivm := invmul pretend UTSZ
else
ivm := 1
lps * ivm
calculatedSer: List UTSZ:= [1]
--in index i is the "almost ZetaFunction" summed to i-1.
--Except calculatedSer.1 which is 1
numberOfPlacesOfDegreeUsingZeta(degree:PI): Integer ==
--is at most called once for each degree. Will calculate the
--entries in calculatdSer.
ser:UTSZ := 1
x:= monomial(1,1)$UTSZ
pol:UTSZ
polser:Union(UTSZ,"failed")
serdel:UTSZ
i:PI := maxIndex(calculatedSer) pretend PI
while i < degree repeat
serdel:= 1
if (n:= numberOfPlacesOfDegree(i)) > 0 then
pol:= (1-x**i) ** (n pretend PI)
polser:= recip(pol)$UTSZ -- coerce(pol)$UTSZ)$UTSZ
if not (polser case "failed") then
serdel:= (polser pretend UTSZ)
else
error "In numberOfPlacesOfDegreeUsingZeta. This shouldn't happen"
ser:= serdel * calculatedSer.i
calculatedSer:= concat(calculatedSer, ser)
i:= i + 1
if degree = 1 then
coefficient(ZetaFunction(),degree)
else
coefficient(ZetaFunction(),degree) - _
coefficient(calculatedSer.degree, degree)
calculatedNP: List Integer := empty()
--local variable, in index i is number of places of degree i.
numberOfPlacesOfDegree(i:PI): Integer ==
if zfCalc then
if (m := maxIndex(calculatedNP)) < i then
calculatedNP:= _
concat(calculatedNP, _
[numberOfPlacesOfDegreeUsingZeta(j pretend PI) _
for j in ((m+1) pretend PI)..i])
calculatedNP.i
else
# placesOfDegree(i) --maybe we should make an improvement in this
placesOfDegree(i) ==
if (not foundPlacesOfDeg?(i)) then
if characteristic()$K**i > (2**16 - 1) then
print("If you are using a prime field and"::OF)
print("GB this will not work."::OF)
desingTree()
placesOfDegree(i,theCurve(),singularPoints())
DegOfPlacesFound:= concat(DegOfPlacesFound, i)
thedeg:= i
select(crap(#1), foundPlaces()$Plc)
numberRatPlacesExtDeg(extDegree:PI): Integer ==
numberPlacesDegExtDeg(1,extDegree)
numberPlacesDegExtDeg(degree:PI, extDegree:PI): Integer ==
res:Integer:=0
m:PI := degree * extDegree
d: PI
while m > 0 repeat
d:= gcd(m, extDegree)
if (m quo d) = degree then
res:= res + (numberOfPlacesOfDegree(m) * d)
m:= (m - 1) pretend PI
res
calculateS(extDeg:PI): List Integer ==
g := genus()
sizeK:NNI := size()$K ** extDeg
i:PositiveInteger := g pretend PI
S: List Integer := [0 for j in 1..g]
good:Boolean := true()$Boolean
while good repeat
S.i := numberRatPlacesExtDeg(i*extDeg) - ((sizeK **$NNI i) + 1)
j:Integer := i - 1
if (not (j = 0)) then
i:= (j pretend PI)
else good:= false()$Boolean
S
LPolynomial(): SparseUnivariatePolynomial Integer ==
LPolynomial(1)
LPolynomial(extDeg:PI): SparseUnivariatePolynomial Integer ==
--when translating to AxiomXL rewrite this function!
g := genus()
zero?(g) => 1
coef: List Integer := [1]
if K has PseudoAlgebraicClosureOfFiniteFieldCategory then
setTower!(1$K)
sizeK:Integer := size()$K ** extDeg --need to do a setExtension before
coef:= concat(coef,[0 for j in 1..(2*g)])
S: List Integer := calculateS(extDeg)
i:PI := 1
tmp:Integer
while i < g + 1 repeat
j:PI := 1
tmp:= 0
while j < i + 1 repeat
tmp:= tmp + S.j * coef((i + 1 - j) pretend PI)
j:= j + 1
coef.(i+1) := tmp quo i
i:= i + 1
i:= 1
while i < g + 1 repeat
ss: Integer := sizeK **$Integer ((g + 1 - i) pretend PI)
val:Integer := ss * coef.i
coef.((2*g+2 - i) pretend PI) := val
i:= i + 1
x:= monomial(1,1)$SUP(INT)
result: SparseUnivariatePolynomial(Integer):= _
1$SparseUnivariatePolynomial(Integer)
coef:= rest(coef)
i:= 1
while i < 2 * g + 1 repeat
pol: SUP(INT) := (first(coef) :: Integer) * (x ** i)
result:= result + pol --(first(coef) :: Integer) * (x ** i)
coef:= rest(coef)
i:= i + 1
result
classNumber():Integer ==
LPolynomial()(1)
|