This file is indexed.

/usr/share/axiom-20170501/src/algebra/GRALG.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
)abbrev category GRALG GradedAlgebra
++ Author: Stephen M. Watt
++ Date Created: May 20, 1991
++ Date Last Updated: May 20, 1991
++ References: 
++ Iyan60 Encyclopedic Dictionary of Mathematics, MIT Press, 1977
++ Description:
++ GradedAlgebra(R,E) denotes ``E-graded R-algebra''.
++ A graded algebra is a graded module together with a degree preserving
++ R-linear map, called the product.
++
++ The name ``product'' is written out in full so inner and outer products
++ with the same mapping type can be distinguished by name.

GradedAlgebra(R,E) : Category == SIG where
  R : CommutativeRing
  E : AbelianMonoid

  SIG ==> Join(GradedModule(R, E),RetractableTo(R)) with

    1 : constant -> %
      ++ \spad{1} is the identity for \spad{product}.
  
    product : (%, %) -> %
      ++ product(a,b) is the degree-preserving R-linear product:
      ++
      ++ \spad{degree product(a,b) = degree a + degree b}
      ++ \spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}
      ++ \spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}
      ++ \spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}
      ++ \spad{product(a,product(b,c)) = product(product(a,b),c)}
  
   add

     if not (R is %) then
  
       0: % == (0$R)::%
  
       1: % == 1$R::%
  
       (r: R)*(x: %) == product(r::%, x)
  
       (x: %)*(r: R) == product(x, r::%)