This file is indexed.

/usr/share/axiom-20170501/src/algebra/GROEBSOL.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
)abbrev package GROEBSOL GroebnerSolve
++ Author : P.Gianni, Summer '88, revised November '89
++ References:
++ Normxx Notes 13: How to Compute a Groebner Basis
++ Description:
++ Solve systems of polynomial equations using Groebner bases
++ Total order Groebner bases are computed and then converted to lex ones
++ This package is mostly intended for internal use.

GroebnerSolve(lv,F,R) : SIG == CODE where
  R : GcdDomain
  F : GcdDomain
  lv : List Symbol

  NNI    ==>  NonNegativeInteger
  I      ==>  Integer
  S      ==>  Symbol
  OV     ==>  OrderedVariableList(lv)
  IES    ==>  IndexedExponents Symbol
  DP     ==>  DirectProduct(#lv,NonNegativeInteger)
  DPoly  ==>  DistributedMultivariatePolynomial(lv,F)
  HDP    ==>  HomogeneousDirectProduct(#lv,NonNegativeInteger)
  HDPoly ==>  HomogeneousDistributedMultivariatePolynomial(lv,F)
  SUP    ==>  SparseUnivariatePolynomial(DPoly)
  L      ==>  List
  P      ==>  Polynomial

  SIG ==> with

    groebSolve : (L DPoly,L OV) -> L L DPoly
      ++ groebSolve(lp,lv) reduces the polynomial system lp in variables lv
      ++ to triangular form. Algorithm based on groebner bases algorithm
      ++ with linear algebra for change of ordering.
      ++ Preprocessing for the general solver.
      ++ The polynomials in input are of type \spadtype{DMP}.

    testDim : (L HDPoly,L OV) -> Union(L HDPoly,"failed")
      ++ testDim(lp,lv) tests if the polynomial system lp
      ++ in variables lv is zero dimensional.

    genericPosition : (L DPoly, L OV) -> Record(dpolys:L DPoly, coords: L I)
      ++ genericPosition(lp,lv) puts a radical zero dimensional ideal
      ++ in general position, for system lp in variables lv.

  CODE ==> add

     import PolToPol(lv,F)
     import GroebnerPackage(F,DP,OV,DPoly)
     import GroebnerInternalPackage(F,DP,OV,DPoly)
     import GroebnerPackage(F,HDP,OV,HDPoly)
     import LinGroebnerPackage(lv,F)

     nv:NNI:=#lv

          ---- test if f is power of a linear mod (rad lpol) ----
                     ----  f is monic  ----
     testPower(uf:SUP,x:OV,lpol:L DPoly) : Union(DPoly,"failed") ==
       df:=degree(uf)
       trailp:DPoly := coefficient(uf,(df-1)::NNI)
       (testquo := trailp exquo (df::F)) case "failed" => "failed"
       trailp := testquo::DPoly
       gg:=gcd(lc:=leadingCoefficient(uf),trailp)
       trailp := (trailp exquo gg)::DPoly
       lc := (lc exquo gg)::DPoly
       linp:SUP:=monomial(lc,1$NNI)$SUP + monomial(trailp,0$NNI)$SUP
       g:DPoly:=multivariate(uf-linp**df,x)
       redPol(g,lpol) ^= 0 => "failed"
       multivariate(linp,x)

            -- is the 0-dimensional ideal I in general position ?  --
                     ----  internal function  ----
     testGenPos(lpol:L DPoly,lvar:L OV):Union(L DPoly,"failed") ==
       rlpol:=reverse lpol
       f:=rlpol.first
       #lvar=1 => [f]
       rlvar:=rest reverse lvar
       newlpol:List(DPoly):=[f]
       for f in rlpol.rest repeat
         x:=first rlvar
         fi:= univariate(f,x)
         if (mainVariable leadingCoefficient fi case "failed") then
           if ((g:= testPower(fi,x,newlpol)) case "failed")
           then return "failed"
           newlpol :=concat(redPol(g::DPoly,newlpol),newlpol)
           rlvar:=rest rlvar
         else if redPol(f,newlpol)^=0 then return"failed"
       newlpol


        -- change coordinates and out the ideal in general position  ----
     genPos(lp:L DPoly,lvar:L OV): Record(polys:L HDPoly, lpolys:L DPoly,
                                           coord:L I, univp:HDPoly) ==
           rlvar:=reverse lvar
           lnp:=[dmpToHdmp(f) for f in lp]
           x := first rlvar;rlvar:=rest rlvar
           testfail:=true
           for count in 1.. while testfail repeat
             ranvals:L I:=[1+(random()$I rem (count*(# lvar))) for vv in rlvar]
             val:=+/[rv*(vv::HDPoly)
                        for vv in rlvar for rv in ranvals]
             val:=val+x::HDPoly
             gb:L HDPoly:= [elt(univariate(p,x),val) for p in lnp]
             gb:=groebner gb
             gbt:=totolex gb
             (gb1:=testGenPos(gbt,lvar)) case "failed"=>"try again"
             testfail:=false
           [gb,gbt,ranvals,dmpToHdmp(last (gb1::L DPoly))]

     genericPosition(lp:L DPoly,lvar:L OV) ==
        nans:=genPos(lp,lvar)
        [nans.lpolys, nans.coord]

        ---- select  the univariate factors
     select(lup:L L HDPoly) : L L HDPoly ==
       lup=[] => list []
       [:[cons(f,lsel) for lsel in select lup.rest] for f in lup.first]

        ---- in the non generic case, we compute the prime ideals ----
           ---- associated to leq, basis is the algebra basis  ----
     findCompon(leq:L HDPoly,lvar:L OV):L L DPoly ==
       teq:=totolex(leq)
       #teq = #lvar => [teq]
      -- ^((teq1:=testGenPos(teq,lvar)) case "failed") => [teq1::L DPoly]
       gp:=genPos(teq,lvar)
       lgp:= gp.polys
       g:HDPoly:=gp.univp
       fg:=(factor g)$GeneralizedMultivariateFactorize(OV,HDP,R,F,HDPoly)
       lfact:=[ff.factor for ff in factors(fg::Factored(HDPoly))]
       result: L L HDPoly := []
       #lfact=1 => [teq]
       for tfact in lfact repeat
         tlfact:=concat(tfact,lgp)
         result:=concat(tlfact,result)
       ranvals:L I:=gp.coord
       rlvar:=reverse lvar
       x:=first rlvar
       rlvar:=rest rlvar
       val:=+/[rv*(vv::HDPoly) for vv in rlvar for rv in ranvals]
       val:=(x::HDPoly)-val
       ans:=[totolex groebner [elt(univariate(p,x),val) for p in lp]
                           for lp in result]
       [ll for ll in ans | ll^=[1]]

     zeroDim?(lp: List HDPoly,lvar:L OV) : Boolean ==
       empty? lp => false
       n:NNI := #lvar
       #lp < n => false
       lvint1 := lvar
       for f in lp while not empty?(lvint1) repeat
          g:= f - reductum f
          x:=mainVariable(g)::OV
          if ground?(leadingCoefficient(univariate(g,x))) then
               lvint1 := remove(x, lvint1)
       empty? lvint1

     -- general solve, gives an error if the system not 0-dimensional
     groebSolve(leq: L DPoly,lvar:L OV) : L L DPoly ==
       lnp:=[dmpToHdmp(f) for f in leq]
       leq1:=groebner lnp
       #(leq1) = 1 and first(leq1) = 1 => list empty()
       ^(zeroDim?(leq1,lvar)) =>
         error "system does not have a finite number of solutions"
       -- add computation of dimension, for a more useful error
       basis:=computeBasis(leq1)
       lup:L HDPoly:=[]
       llfact:L Factored(HDPoly):=[]
       for x in lvar repeat
         g:=minPol(leq1,basis,x)
         fg:=(factor g)$GeneralizedMultivariateFactorize(OV,HDP,R,F,HDPoly)
         llfact:=concat(fg::Factored(HDPoly),llfact)
         if degree(g,x) = #basis then leave "stop factoring"
       result: L L DPoly := []
       -- selecting a factor from the lists of the univariate factors
       lfact:=select [[ff.factor for ff in factors llf]
                       for llf in llfact]
       for tfact in lfact repeat
         tfact:=groebner concat(tfact,leq1)
         tfact=[1] => "next value"
         result:=concat(result,findCompon(tfact,lvar))
       result

     -- test if the system is zero dimensional
     testDim(leq : L HDPoly,lvar : L OV) : Union(L HDPoly,"failed") ==
       leq1:=groebner leq
       #(leq1) = 1 and first(leq1) = 1 => empty()
       ^(zeroDim?(leq1,lvar)) => "failed"
       leq1