This file is indexed.

/usr/share/axiom-20170501/src/algebra/ICDEN.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
)abbrev package ICDEN InnerCommonDenominator
++ Author: Manuel Bronstein
++ Date Created: 2 May 1988
++ Date Last Updated: 22 Nov 1989
++ Description: 
++ InnerCommonDenominator provides functions to compute
++ the common denominator of a finite linear aggregate of elements
++ of the quotient field of an integral domain.

InnerCommonDenominator(R, Q, A, B) : SIG == CODE where
  R: IntegralDomain
  Q: QuotientFieldCategory R
  A: FiniteLinearAggregate R
  B: FiniteLinearAggregate Q
 
  SIG ==> with

    commonDenominator : B -> R 
      ++ commonDenominator([q1,...,qn]) returns a common denominator
      ++ d for q1,...,qn.

    clearDenominator : B -> A 
      ++ clearDenominator([q1,...,qn]) returns \spad{[p1,...,pn]} such that
      ++ \spad{qi = pi/d} where d is a common denominator for the qi's.

    splitDenominator : B -> Record(num: A, den: R)
      ++ splitDenominator([q1,...,qn]) returns
      ++ \spad{[[p1,...,pn], d]} such that
      ++ \spad{qi = pi/d} and d is a common denominator for the qi's.
 
  CODE ==> add

    import FiniteLinearAggregateFunctions2(Q, B, R, A)
 
    clearDenominator l ==
      d := commonDenominator l
      map(x +-> numer(d*x), l)
 
    splitDenominator l ==
      d := commonDenominator l
      [map(x +-> numer(d*x), l), d]
 
    if R has GcdDomain then

      commonDenominator l == reduce(lcm, map(denom, l),1)

    else

      commonDenominator l == reduce("*", map(denom, l), 1)