This file is indexed.

/usr/share/axiom-20170501/src/algebra/IDEAL.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
)abbrev domain IDEAL PolynomialIdeals
++ Author: P. Gianni
++ Date Created: summer 1986
++ Date Last Updated: September 1996
++ Description:
++ This domain represents polynomial ideals with coefficients in any
++ field and supports the basic ideal operations, including intersection
++ sum and quotient.
++ An ideal is represented by a list of polynomials (the generators of
++ the ideal) and a boolean that is true if the generators are a Groebner
++ basis.
++ The algorithms used are based on Groebner basis computations. The
++ ordering is determined by the datatype of the input polynomials.
++ Users may use refinements of total degree orderings.

PolynomialIdeals(F,Expon,VarSet,DPoly) : SIG == CODE where
  F :  Field
  Expon : OrderedAbelianMonoidSup
  VarSet : OrderedSet
  DPoly : PolynomialCategory(F,Expon,VarSet)

  SUP ==> SparseUnivariatePolynomial(DPoly)
  NNI ==> NonNegativeInteger
  Z   ==> Integer
  P   ==> Polynomial F
  MF  ==> Matrix(F)
  ST  ==> SuchThat(List P, List Equation P)
  GenMPos  ==> Record(mval:MF,invmval:MF,genIdeal:Ideal)
  Ideal    ==> %

  SIG ==> SetCategory with

     "*" : (Ideal,Ideal) -> Ideal
       ++ I*J computes the product of the ideal I and J.

     "**" : (Ideal,NNI) -> Ideal
       ++ I**n computes the nth power of the ideal I.

     "+" : (Ideal,Ideal) -> Ideal
       ++ I+J computes the ideal generated by the union of I and J.

     one? : Ideal -> Boolean
       ++ one?(I) tests whether the ideal I is the unit ideal,
       ++ contains 1.

     zero? : Ideal -> Boolean
       ++ zero?(I) tests whether the ideal I is the zero ideal

     element? : (DPoly,Ideal) -> Boolean
       ++ element?(f,I) tests whether the polynomial f belongs to
       ++ the ideal I.

     in? : (Ideal,Ideal) -> Boolean
       ++ in?(I,J) tests if the ideal I is contained in the ideal J.

     inRadical? : (DPoly,Ideal) -> Boolean
       ++ inRadical?(f,I) tests if some power of the polynomial f
       ++ belongs to the ideal I.

     zeroDim? : (Ideal,List VarSet) -> Boolean
       ++ zeroDim?(I,lvar) tests if the ideal I is zero dimensional,
       ++ all its associated primes are maximal,
       ++ in the ring \spad{F[lvar]}

     zeroDim? : Ideal -> Boolean
       ++ zeroDim?(I) tests if the ideal I is zero dimensional,
       ++ all its associated primes are maximal,
       ++ in the ring \spad{F[lvar]}, 
       ++ where lvar are the variables appearing  in I

     intersect : (Ideal,Ideal) -> Ideal
       ++ intersect(I,J) computes the intersection of the ideals I and J.

     intersect : List(Ideal) -> Ideal
       ++ intersect(LI) computes the intersection of the list of ideals LI.

     quotient : (Ideal,Ideal) -> Ideal
       ++ quotient(I,J) computes the quotient of the ideals I and J,
       ++ \spad{(I:J)}.

     quotient : (Ideal,DPoly) -> Ideal
       ++ quotient(I,f) computes the quotient of the ideal I by the principal
       ++ ideal generated by the polynomial f, \spad{(I:(f))}.

     groebner : Ideal -> Ideal
       ++ groebner(I) returns a set of generators of I that are a 
       ++ Groebner basis for I.

     generalPosition : (Ideal,List VarSet) -> GenMPos
       ++ generalPosition(I,listvar) perform a random linear
       ++ transformation on the variables in listvar and returns
       ++ the transformed ideal along with the change of basis matrix.

     backOldPos : GenMPos -> Ideal
       ++ backOldPos(genPos) takes the result
       ++ produced by generalPosition from PolynomialIdeals
       ++ and performs the inverse transformation, returning the original ideal
       ++ \spad{backOldPos(generalPosition(I,listvar))} = I.

     dimension : (Ideal,List VarSet) -> Z
       ++ dimension(I,lvar) gives the dimension of the ideal I,
       ++ in the ring \spad{F[lvar]}

     dimension : Ideal -> Z
       ++ dimension(I) gives the dimension of the ideal I.
       ++ in the ring \spad{F[lvar]}, where lvar are the variables 
       ++ appearing  in I

     leadingIdeal : Ideal -> Ideal
       ++ leadingIdeal(I) is the ideal generated by the
       ++ leading terms of the elements of the ideal I.

     ideal : List DPoly -> Ideal
       ++ ideal(polyList) constructs the ideal generated by the list
       ++ of polynomials polyList.

     groebnerIdeal : List DPoly -> Ideal
       ++ groebnerIdeal(polyList) constructs the ideal generated by the list
       ++ of polynomials polyList which are assumed to be a Groebner
       ++ basis.
       ++ Note: this operation avoids a Groebner basis computation.

     groebner? : Ideal -> Boolean
       ++ groebner?(I) tests if the generators of the ideal I are a 
       ++ Groebner basis.

     generators : Ideal -> List DPoly
       ++ generators(I) returns a list of generators for the ideal I.

     coerce : List DPoly -> Ideal
       ++ coerce(polyList) converts the list of polynomials polyList 
       ++ to an ideal.

     saturate : (Ideal,DPoly) -> Ideal
       ++ saturate(I,f) is the saturation of the ideal I
       ++ with respect to the multiplicative
       ++ set generated by the polynomial f.

     saturate : (Ideal,DPoly,List VarSet) -> Ideal
       ++ saturate(I,f,lvar) is the saturation with respect to the prime
       ++ principal ideal which is generated by f in the polynomial ring
       ++ \spad{F[lvar]}.

     if VarSet has ConvertibleTo Symbol then

       relationsIdeal : List DPoly -> ST
         ++ relationsIdeal(polyList) returns the ideal of relations among the
         ++ polynomials in polyList.

  CODE ==> add

   ---  Representation ---
     Rep := Record(idl:List DPoly,isGr:Boolean)


                ----  Local Functions  ----

     contractGrob  :    newIdeal          ->  Ideal
     npoly         :     DPoly            ->  newPoly
     oldpoly       :     newPoly          ->  Union(DPoly,"failed")
     leadterm      :   (DPoly,VarSet)     ->  DPoly
     choosel       :   (DPoly,DPoly)      ->  DPoly
     isMonic?      :   (DPoly,VarSet)     ->  Boolean
     randomat      :     List Z           ->  Record(mM:MF,imM:MF)
     monomDim      : (Ideal,List VarSet)  ->  NNI
     variables     :       Ideal          ->  List VarSet
     subset        :     List VarSet      ->  List List VarSet
     makeleast     : (List VarSet,List VarSet)  ->  List VarSet

     newExpon:  OrderedAbelianMonoidSup
     newExpon:= Product(NNI,Expon)
     newPoly := PolynomialRing(F,newExpon)

     import GaloisGroupFactorizer(SparseUnivariatePolynomial Z)
     import GroebnerPackage(F,Expon,VarSet,DPoly)
     import GroebnerPackage(F,newExpon,VarSet,newPoly)

     newIdeal ==> List(newPoly)

     npoly(f:DPoly) : newPoly ==
       f=0$DPoly => 0$newPoly
       monomial(leadingCoefficient f,makeprod(0,degree f))$newPoly +
             npoly(reductum f)

     oldpoly(q:newPoly) : Union(DPoly,"failed") ==
       q=0$newPoly => 0$DPoly
       dq:newExpon:=degree q
       n:NNI:=selectfirst (dq)
       n^=0 => "failed"
       ((g:=oldpoly reductum q) case "failed") => "failed"
       monomial(leadingCoefficient q,selectsecond dq)$DPoly + (g::DPoly)

     leadterm(f:DPoly,lvar:List VarSet) : DPoly ==
       empty?(lf:=variables f)  or lf=lvar => f
       leadterm(leadingCoefficient univariate(f,lf.first),lvar)

     choosel(f:DPoly,g:DPoly) : DPoly ==
       g=0 => f
       (f1:=f exquo g) case "failed" => f
       choosel(f1::DPoly,g)

     contractGrob(I1:newIdeal) : Ideal ==
       J1:List(newPoly):=groebner(I1)
       while (oldpoly J1.first) case "failed" repeat J1:=J1.rest
       [[(oldpoly f)::DPoly for f in J1],true]

     makeleast(fullVars: List VarSet,leastVars:List VarSet) : List VarSet ==
       n:= # leastVars
       #fullVars < n  => error "wrong vars"
       n=0 => fullVars
       append([vv for vv in fullVars| ^member?(vv,leastVars)],leastVars)

     isMonic?(f:DPoly,x:VarSet) : Boolean ==
       ground? leadingCoefficient univariate(f,x)

     subset(lv : List VarSet) : List List VarSet ==
       #lv =1 => [lv,empty()]
       v:=lv.1
       ll:=subset(rest lv)
       l1:=[concat(v,set) for set in ll]
       concat(l1,ll)

     monomDim(listm:Ideal,lv:List VarSet) : NNI ==
       monvar: List List VarSet := []
       for f in generators listm repeat
         mvset := variables f
         #mvset > 1 => monvar:=concat(mvset,monvar)
         lv:=delete(lv,position(mvset.1,lv))
       empty? lv => 0
       lsubset : List List VarSet := sort((a,b)+->#a > #b ,subset(lv))
       for subs in lsubset repeat
         ldif:List VarSet:= lv
         for mvset in monvar while ldif ^=[] repeat
           ldif:=setDifference(mvset,subs)
         if ^(empty? ldif) then  return #subs
       0

               --    Exported  Functions   ----

                 ----  is  I =  J  ?  ----
     (I:Ideal = J:Ideal) == in?(I,J) and in?(J,I)

               ----  check if f is in I  ----
     element?(f:DPoly,I:Ideal) : Boolean ==
       Id:=(groebner I).idl
       empty? Id => f = 0
       normalForm(f,Id) = 0

             ---- check if I is contained in J  ----
     in?(I:Ideal,J:Ideal):Boolean ==
       J:= groebner J
       empty?(I.idl) => true
       "and"/[element?(f,J) for f in I.idl ]


            ----  groebner base for an Ideal  ----
     groebner(I:Ideal) : Ideal  ==
       I.isGr =>
         "or"/[^zero? f for f in I.idl] => I
         [empty(),true]
       [groebner I.idl ,true]

            ----  Intersection of two ideals  ----
     intersect(I:Ideal,J:Ideal) : Ideal ==
       empty?(Id:=I.idl) => I
       empty?(Jd:=J.idl) => J
       tp:newPoly := monomial(1,makeprod(1,0$Expon))$newPoly
       tp1:newPoly:= tp-1
       contractGrob(concat([tp*npoly f for f in Id],
                     [tp1*npoly f for f in Jd]))


            ----   intersection for a list of ideals  ----

     intersect(lid:List(Ideal)) : Ideal == "intersect"/[l for l in lid]

               ----  quotient by an element  ----
     quotient(I:Ideal,f:DPoly) : Ideal ==
       --[[(g exquo f)::DPoly for g in (intersect(I,[f]::%)).idl ],true]
        import GroebnerInternalPackage(F,Expon,VarSet,DPoly)
        [minGbasis [(g exquo f)::DPoly
                 for g in (intersect(I,[f]::%)).idl ],true]

                ----  quotient of two ideals  ----
     quotient(I:Ideal,J:Ideal) : Ideal ==
       Jdl := J.idl
       empty?(Jdl) => ideal [1]
       [("intersect"/[quotient(I,f) for f in Jdl ]).idl ,true]


                ----    sum of two ideals  ----
     (I:Ideal + J:Ideal) : Ideal == [groebner(concat(I.idl ,J.idl )),true]

                ----   product of two ideals  ----
     (I:Ideal * J:Ideal):Ideal ==
       [groebner([:[f*g for f in I.idl ] for g in J.idl ]),true]

                ----  power of an ideal  ----
     (I:Ideal ** n:NNI) : Ideal ==
       n=0 => [[1$DPoly],true]
       (I * (I**(n-1):NNI))

       ----  saturation with respect to the multiplicative set f**n ----
     saturate(I:Ideal,f:DPoly) : Ideal ==
       f=0 => error "f is zero"
       tp:newPoly := (monomial(1,makeprod(1,0$Expon))$newPoly * npoly f)-1
       contractGrob(concat(tp,[npoly g for g in I.idl ]))

     ----  saturation with respect to a prime principal ideal in lvar ---
     saturate(I:Ideal,f:DPoly,lvar:List(VarSet)) : Ideal ==
       Id := I.idl
       fullVars := "setUnion"/[variables g for g in Id]
       newVars:=makeleast(fullVars,lvar)
       subVars := [monomial(1,vv,1) for vv in newVars]
       J:List DPoly:=groebner([eval(g,fullVars,subVars) for g in Id])
       ltJ:=[leadterm(g,lvar) for g in J]
       s:DPoly:=_*/[choosel(ltg,f) for ltg in ltJ]
       fullPol:=[monomial(1,vv,1) for vv in fullVars]
       [[eval(g,newVars,fullPol) for g in (saturate(J::%,s)).idl],true]

            ----  is the ideal zero dimensional?  ----
            ----      in the ring F[lvar]?        ----
     zeroDim?(I:Ideal,lvar:List VarSet) : Boolean ==
       J:=(groebner I).idl
       empty? J => false
       J = [1] => false
       n:NNI := # lvar
       #J < n => false
       for f in J while ^empty?(lvar) repeat
         x:=(mainVariable f)::VarSet
         if isMonic?(f,x) then lvar:=delete(lvar,position(x,lvar))
       empty?(lvar)

            ----  is the ideal zero dimensional?  ----
     zeroDim?(I:Ideal):Boolean == 
       zeroDim?(I,"setUnion"/[variables g for g in I.idl])

               ----  test if f is in the radical of I  ----
     inRadical?(f:DPoly,I:Ideal) : Boolean ==
       f=0$DPoly => true
       tp:newPoly :=(monomial(1,makeprod(1,0$Expon))$newPoly * npoly f)-1
       Id:=I.idl
       normalForm(1$newPoly,groebner concat(tp,[npoly g for g in Id])) = 0

              ----   dimension of an ideal  ----
              ----    in the ring F[lvar]   ----
     dimension(I:Ideal,lvar:List VarSet) : Z ==
       I:=groebner I
       empty?(I.idl) => # lvar
       element?(1,I) => -1
       truelist:="setUnion"/[variables f for f in I.idl]
       "or"/[^member?(vv,lvar) for vv in truelist] => error "wrong variables"
       truelist:=setDifference(lvar,setDifference(lvar,truelist))
       ed:Z:=#lvar - #truelist
       leadid:=leadingIdeal(I)
       n1:Z:=monomDim(leadid,truelist)::Z
       ed+n1

     dimension(I:Ideal) : Z == 
       dimension(I,"setUnion"/[variables g for g in I.idl])

     -- leading term ideal --
     leadingIdeal(I : Ideal) : Ideal ==
       Idl:= (groebner I).idl
       [[(f-reductum f) for f in Idl],true]

               ---- ideal of relations among the fi  ----
     if VarSet has ConvertibleTo Symbol then

       monompol(df:List NNI,lcf:F,lv:List VarSet) : P ==
         g:P:=lcf::P
         for dd in df for v in lv repeat
           g:= monomial(g,convert v,dd)
         g

       relationsIdeal(listf : List DPoly): ST ==
         empty? listf  => [empty(),empty()]$ST
         nf:=#listf
         lvint := "setUnion"/[variables g for g in listf]
         vl: List Symbol := [convert vv for vv in lvint]
         nvar:List Symbol:=[new() for i in 1..nf]
         VarSet1:=OrderedVariableList(concat(vl,nvar))
         lv1:=[variable(vv)$VarSet1::VarSet1 for vv in nvar]
         DirP:=DirectProduct(nf,NNI)
         nExponent:=Product(Expon,DirP)
         nPoly := PolynomialRing(F,nExponent)
         gp:=GroebnerPackage(F,nExponent,VarSet1,nPoly)
         lf:List nPoly :=[]
         lp:List P:=[]
         for f in listf for i in 1..  repeat
           vec2:Vector(NNI):=new(nf,0$NNI)
           vec2.i:=1
           g:nPoly:=0$nPoly
           pol:=0$P
           while f^=0 repeat
             df:=degree(f-reductum f,lvint)
             lcf:=leadingCoefficient f
             pol:=pol+monompol(df,lcf,lvint)
             g:=g+monomial(lcf,makeprod(degree f,0))$nPoly
             f:=reductum f
           lp:=concat(pol,lp)
           lf:=concat(monomial(1,makeprod(0,directProduct vec2))-g,lf)
         npol:List P :=[v::P for v in nvar]
         leq : List Equation P :=
               [p = pol for p in npol for pol in reverse lp ]
         lf:=(groebner lf)$gp
         while lf^=[] repeat
           q:=lf.first
           dq:nExponent:=degree q
           n:=selectfirst (dq)
           if n=0 then leave "done"
           lf:=lf.rest
         solsn:List P:=[]
         for q in lf repeat
           g:Polynomial F :=0
           while q^=0 repeat
             dq:=degree q
             lcq:=leadingCoefficient q
             q:=reductum q
             vdq:=(selectsecond dq):Vector NNI
             g:=g+ lcq*
                _*/[p**vdq.j for p in npol for j in 1..]
           solsn:=concat(g,solsn)
         [solsn,leq]$ST

     coerce(Id:List DPoly) : Ideal == [Id,false]

     coerce(I:Ideal) : OutputForm ==
       Idl := I.idl
       empty? Idl => [0$DPoly] :: OutputForm
       Idl :: OutputForm

     ideal(Id:List DPoly) :Ideal  ==  [[f for f in Id|f^=0],false]

     groebnerIdeal(Id:List DPoly) : Ideal == [Id,true]

     generators(I:Ideal) : List DPoly  == I.idl

     groebner?(I:Ideal) : Boolean  ==  I.isGr

     one?(I:Ideal) : Boolean == element?(1, I)

     zero?(I:Ideal) : Boolean == empty? (groebner I).idl