/usr/share/axiom-20170501/src/algebra/IDECOMP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | )abbrev package IDECOMP IdealDecompositionPackage
++ Author: P. Gianni
++ Date Created: summer 1986
++ References:
++ Gian88 Groebner Bases and Primary Decomposition of Polynomial Ideals
++ Description:
++ This package provides functions for the primary decomposition of
++ polynomial ideals over the rational numbers. The ideals are members
++ of the \spadtype{PolynomialIdeals} domain, and the polynomial generators are
++ required to be from the \spadtype{DistributedMultivariatePolynomial} domain.
IdealDecompositionPackage(vl,nv) : SIG == CODE where
vl : List Symbol
nv : NonNegativeInteger
Z ==> Integer -- substitute with PFE cat
Q ==> Fraction Z
F ==> Fraction P
P ==> Polynomial Z
UP ==> SparseUnivariatePolynomial P
Expon ==> DirectProduct(nv,NNI)
OV ==> OrderedVariableList(vl)
SE ==> Symbol
SUP ==> SparseUnivariatePolynomial(DPoly)
DPoly1 ==> DistributedMultivariatePolynomial(vl,Q)
DPoly ==> DistributedMultivariatePolynomial(vl,F)
NNI ==> NonNegativeInteger
Ideal == PolynomialIdeals(Q,Expon,OV,DPoly1)
FIdeal == PolynomialIdeals(F,Expon,OV,DPoly)
Fun0 == Union("zeroPrimDecomp","zeroRadComp")
GenPos == Record(changeval:List Z,genideal:FIdeal)
SIG ==> with
zeroDimPrime? : Ideal -> Boolean
++ zeroDimPrime?(I) tests if the ideal I is a 0-dimensional prime.
zeroDimPrimary? : Ideal -> Boolean
++ zeroDimPrimary?(I) tests if the ideal I is 0-dimensional primary.
prime? : Ideal -> Boolean
++ prime?(I) tests if the ideal I is prime.
radical : Ideal -> Ideal
++ radical(I) returns the radical of the ideal I.
primaryDecomp : Ideal -> List(Ideal)
++ primaryDecomp(I) returns a list of primary ideals such that their
++ intersection is the ideal I.
contract : (Ideal,List OV ) -> Ideal
++ contract(I,lvar) contracts the ideal I to the polynomial ring
++ \spad{F[lvar]}.
CODE ==> add
import MPolyCatRationalFunctionFactorizer(Expon,OV,Z,DPoly)
import GroebnerPackage(F,Expon,OV,DPoly)
import GroebnerPackage(Q,Expon,OV,DPoly1)
---- Local Functions -----
genPosLastVar : (FIdeal,List OV) -> GenPos
zeroPrimDecomp : (FIdeal,List OV) -> List(FIdeal)
zeroRadComp : (FIdeal,List OV) -> FIdeal
zerodimcase : (FIdeal,List OV) -> Boolean
is0dimprimary : (FIdeal,List OV) -> Boolean
backGenPos : (FIdeal,List Z,List OV) -> FIdeal
reduceDim : (Fun0,FIdeal,List OV) -> List FIdeal
findvar : (FIdeal,List OV) -> OV
testPower : (SUP,OV,FIdeal) -> Boolean
goodPower : (DPoly,FIdeal) -> Record(spol:DPoly,id:FIdeal)
pushdown : (DPoly,OV) -> DPoly
pushdterm : (DPoly,OV,Z) -> DPoly
pushup : (DPoly,OV) -> DPoly
pushuterm : (DPoly,SE,OV) -> DPoly
pushucoef : (UP,OV) -> DPoly
trueden : (P,SE) -> P
rearrange : (List OV) -> List OV
deleteunit : List FIdeal -> List FIdeal
ismonic : (DPoly,OV) -> Boolean
MPCFQF ==> MPolyCatFunctions2(OV,Expon,Expon,Q,F,DPoly1,DPoly)
MPCFFQ ==> MPolyCatFunctions2(OV,Expon,Expon,F,Q,DPoly,DPoly1)
convertQF(a:Q) : F == ((numer a):: F)/((denom a)::F)
convertFQ(a:F) : Q == (ground numer a)/(ground denom a)
internalForm(I:Ideal) : FIdeal ==
Id:=generators I
nId:=[map(convertQF,poly)$MPCFQF for poly in Id]
groebner? I => groebnerIdeal nId
ideal nId
externalForm(I:FIdeal) : Ideal ==
Id:=generators I
nId:=[map(convertFQ,poly)$MPCFFQ for poly in Id]
groebner? I => groebnerIdeal nId
ideal nId
lvint:=[variable(xx)::OV for xx in vl]
nvint1:=(#lvint-1)::NNI
deleteunit(lI: List FIdeal) : List FIdeal ==
[I for I in lI | _^ element?(1$DPoly,I)]
rearrange(vlist:List OV) :List OV ==
vlist=[] => vlist
sort((z1,z2)+->z1>z2,setDifference(lvint,setDifference(lvint,vlist)))
---- radical of a 0-dimensional ideal ----
zeroRadComp(I:FIdeal,truelist:List OV) : FIdeal ==
truelist=[] => I
Id:=generators I
x:OV:=truelist.last
#Id=1 =>
f:=Id.first
g:= (f exquo (gcd (f,differentiate(f,x))))::DPoly
groebnerIdeal([g])
y:=truelist.first
px:DPoly:=x::DPoly
py:DPoly:=y::DPoly
f:=Id.last
g:= (f exquo (gcd (f,differentiate(f,x))))::DPoly
Id:=groebner(cons(g,remove(f,Id)))
lf:=Id.first
pv:DPoly:=0
pw:DPoly:=0
while degree(lf,y)^=1 repeat
val:=random()$Z rem 23
pv:=px+val*py
pw:=px-val*py
Id:=groebner([(univariate(h,x)).pv for h in Id])
lf:=Id.first
ris:= generators(zeroRadComp(groebnerIdeal(Id.rest),truelist.rest))
ris:=cons(lf,ris)
if pv^=0 then
ris:=[(univariate(h,x)).pw for h in ris]
groebnerIdeal(groebner ris)
---- find the power that stabilizes (I:s) ----
goodPower(s:DPoly,I:FIdeal) : Record(spol:DPoly,id:FIdeal) ==
f:DPoly:=s
I:=groebner I
J:=generators(JJ:= (saturate(I,s)))
while _^ in?(ideal([f*g for g in J]),I) repeat f:=s*f
[f,JJ]
---- is the ideal zerodimensional? ----
---- the "true variables" are in truelist ----
zerodimcase(J:FIdeal,truelist:List OV) : Boolean ==
element?(1,J) => true
truelist=[] => true
n:=#truelist
Jd:=groebner generators J
for x in truelist while Jd^=[] repeat
f := Jd.first
Jd:=Jd.rest
if ((y:=mainVariable f) case "failed") or (y::OV ^=x )
or _^ (ismonic (f,x)) then return false
while Jd^=[] and (mainVariable Jd.first)::OV=x repeat Jd:=Jd.rest
if Jd=[] and position(x,truelist)<n then return false
true
---- choose the variable for the reduction step ----
--- J groebnerner in gen pos ---
findvar(J:FIdeal,truelist:List OV) : OV ==
lmonicvar:List OV :=[]
for f in generators J repeat
t:=f - reductum f
vt:List OV :=variables t
if #vt=1 then lmonicvar:=setUnion(vt,lmonicvar)
badvar:=setDifference(truelist,lmonicvar)
badvar.first
---- function for the "reduction step ----
reduceDim(flag:Fun0,J:FIdeal,truelist:List OV) : List(FIdeal) ==
element?(1,J) => [J]
zerodimcase(J,truelist) =>
(flag case "zeroPrimDecomp") => zeroPrimDecomp(J,truelist)
(flag case "zeroRadComp") => [zeroRadComp(J,truelist)]
x:OV:=findvar(J,truelist)
Jnew:=[pushdown(f,x) for f in generators J]
Jc: List FIdeal :=[]
Jc:=reduceDim(flag,groebnerIdeal Jnew,remove(x,truelist))
res1:=[ideal([pushup(f,x) for f in generators idp]) for idp in Jc]
s:=pushup((_*/[leadingCoefficient f for f in Jnew])::DPoly,x)
degree(s,x)=0 => res1
res1:=[saturate(II,s) for II in res1]
good:=goodPower(s,J)
sideal := groebnerIdeal(groebner(cons(good.spol,generators J)))
in?(good.id, sideal) => res1
sresult:=reduceDim(flag,sideal,truelist)
for JJ in sresult repeat
if not(in?(good.id,JJ)) then res1:=cons(JJ,res1)
res1
---- Primary Decomposition for 0-dimensional ideals ----
zeroPrimDecomp(I:FIdeal,truelist:List OV): List(FIdeal) ==
truelist=[] => list I
newJ:=genPosLastVar(I,truelist);lval:=newJ.changeval;
J:=groebner newJ.genideal
x:=truelist.last
Jd:=generators J
g:=Jd.last
lfact:= factors factor(g)
ris:List FIdeal:=[]
for ef in lfact repeat
g:DPoly:=(ef.factor)**(ef.exponent::NNI)
J1:= groebnerIdeal(groebner cons(g,Jd))
if _^ (is0dimprimary (J1,truelist)) then
return zeroPrimDecomp(I,truelist)
ris:=cons(groebner backGenPos(J1,lval,truelist),ris)
ris
---- radical of an Ideal ----
radical(I:Ideal) : Ideal ==
J:=groebner(internalForm I)
truelist:=rearrange("setUnion"/[variables f for f in generators J])
truelist=[] => externalForm J
externalForm("intersect"/reduceDim("zeroRadComp",J,truelist))
-- the following functions are used to "push" x in the coefficient ring -
---- push x in the coefficient domain for a polynomial ----
pushdown(g:DPoly,x:OV) : DPoly ==
rf:DPoly:=0$DPoly
i:=position(x,lvint)
while g^=0 repeat
g1:=reductum g
rf:=rf+pushdterm(g-g1,x,i)
g := g1
rf
---- push x in the coefficient domain for a term ----
pushdterm(t:DPoly,x:OV,i:Z):DPoly ==
n:=degree(t,x)
xp:=convert(x)@SE
cf:=monomial(1,xp,n)$P :: F
newt := t exquo monomial(1,x,n)$DPoly
cf * newt::DPoly
---- push back the variable ----
pushup(f:DPoly,x:OV) :DPoly ==
h:=1$P
rf:DPoly:=0$DPoly
g := f
xp := convert(x)@SE
while g^=0 repeat
h:=lcm(trueden(denom leadingCoefficient g,xp),h)
g:=reductum g
f:=(h::F)*f
while f^=0 repeat
g:=reductum f
rf:=rf+pushuterm(f-g,xp,x)
f:=g
rf
trueden(c:P,x:SE) : P ==
degree(c,x) = 0 => 1
c
---- push x back from the coefficient domain for a term ----
pushuterm(t:DPoly,xp:SE,x:OV):DPoly ==
pushucoef((univariate(numer leadingCoefficient t,xp)$P), x)*
monomial(inv((denom leadingCoefficient t)::F),degree t)$DPoly
pushucoef(c:UP,x:OV):DPoly ==
c = 0 => 0
monomial((leadingCoefficient c)::F::DPoly,x,degree c) +
pushucoef(reductum c,x)
-- is the 0-dimensional ideal I primary ? --
---- internal function ----
is0dimprimary(J:FIdeal,truelist:List OV) : Boolean ==
element?(1,J) => true
Jd:=generators(groebner J)
#(factors factor Jd.last)^=1 => return false
i:=subtractIfCan(#truelist,1)
(i case "failed") => return true
JR:=(reverse Jd);JM:=groebnerIdeal([JR.first]);JP:List(DPoly):=[]
for f in JR.rest repeat
if _^ ismonic(f,truelist.i) then
if _^ inRadical?(f,JM) then return false
JP:=cons(f,JP)
else
x:=truelist.i
i:=(i-1)::NNI
if _^ testPower(univariate(f,x),x,JM) then return false
JM :=groebnerIdeal(append(cons(f,JP),generators JM))
true
---- Functions for the General Position step ----
---- put the ideal in general position ----
genPosLastVar(J:FIdeal,truelist:List OV):GenPos ==
x := last truelist ;lv1:List OV :=remove(x,truelist)
ranvals:List(Z):=[(random()$Z rem 23) for vv in lv1]
val:=_+/[rv*(vv::DPoly) for vv in lv1 for rv in ranvals]
val:=val+(x::DPoly)
[ranvals,groebnerIdeal(groebner([(univariate(p,x)).val
for p in generators J]))]$GenPos
---- convert back the ideal ----
backGenPos(I:FIdeal,lval:List Z,truelist:List OV) : FIdeal ==
lval=[] => I
x := last truelist ;lv1:List OV:=remove(x,truelist)
val:=-(_+/[rv*(vv::DPoly) for vv in lv1 for rv in lval])
val:=val+(x::DPoly)
groebnerIdeal
(groebner([(univariate(p,x)).val for p in generators I ]))
ismonic(f:DPoly,x:OV) : Boolean ==
ground? leadingCoefficient(univariate(f,x))
---- test if f is power of a linear mod (rad J) ----
---- f is monic ----
testPower(uf:SUP,x:OV,J:FIdeal) : Boolean ==
df:=degree(uf)
trailp:DPoly := inv(df:Z ::F) *coefficient(uf,(df-1)::NNI)
linp:SUP:=(monomial(1$DPoly,1$NNI)$SUP +
monomial(trailp,0$NNI)$SUP)**df
g:DPoly:=multivariate(uf-linp,x)
inRadical?(g,J)
---- Exported Functions ----
-- is the 0-dimensional ideal I prime ? --
zeroDimPrime?(I:Ideal) : Boolean ==
J:=groebner((genPosLastVar(internalForm I,lvint)).genideal)
element?(1,J) => true
n:NNI:=#vl;i:NNI:=1
Jd:=generators J
#Jd^=n => false
for f in Jd repeat
if _^ ismonic(f,lvint.i) then return false
if i<n and (degree univariate(f,lvint.i))^=1 then return false
i:=i+1
g:=Jd.n
#(lfact:=factors(factor g)) >1 => false
lfact.1.exponent =1
-- is the 0-dimensional ideal I primary ? --
zeroDimPrimary?(J:Ideal):Boolean ==
is0dimprimary(internalForm J,lvint)
---- Primary Decomposition of I -----
primaryDecomp(I:Ideal) : List(Ideal) ==
J:=groebner(internalForm I)
truelist:=rearrange("setUnion"/[variables f for f in generators J])
truelist=[] => [externalForm J]
[externalForm II for II in reduceDim("zeroPrimDecomp",J,truelist)]
---- contract I to the ring with lvar variables ----
contract(I:Ideal,lvar: List OV) : Ideal ==
Id:= generators(groebner I)
empty?(Id) => I
fullVars:= "setUnion"/[variables g for g in Id]
fullVars = lvar => I
n:= # lvar
#fullVars < n => error "wrong vars"
n=0 => I
newVars:=
append([vv for vv in fullVars| ^member?(vv,lvar)]$List(OV),lvar)
subsVars := [monomial(1,vv,1)$DPoly1 for vv in newVars]
lJ:= [eval(g,fullVars,subsVars) for g in Id]
J := groebner(lJ)
J=[1] => groebnerIdeal J
J=[0] => groebnerIdeal empty()
J:=[f for f in J| member?(mainVariable(f)::OV,newVars)]
fullPol :=[monomial(1,vv,1)$DPoly1 for vv in fullVars]
groebnerIdeal([eval(gg,newVars,fullPol) for gg in J])
|