This file is indexed.

/usr/share/axiom-20170501/src/algebra/IDECOMP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
)abbrev package IDECOMP IdealDecompositionPackage
++ Author: P. Gianni
++ Date Created: summer 1986
++ References:
++ Gian88 Groebner Bases and Primary Decomposition of Polynomial Ideals
++ Description:
++ This package provides functions for the primary decomposition of
++ polynomial ideals over the rational numbers. The ideals are members
++ of the \spadtype{PolynomialIdeals} domain, and the polynomial generators are
++ required to be from the \spadtype{DistributedMultivariatePolynomial} domain.

IdealDecompositionPackage(vl,nv) : SIG == CODE where
  vl :  List Symbol
  nv :  NonNegativeInteger

  Z      ==>  Integer  -- substitute with PFE cat
  Q      ==>  Fraction Z
  F      ==>  Fraction P
  P      ==>  Polynomial Z
  UP     ==>  SparseUnivariatePolynomial P
  Expon  ==>  DirectProduct(nv,NNI)
  OV     ==>  OrderedVariableList(vl)
  SE     ==>  Symbol
  SUP    ==>  SparseUnivariatePolynomial(DPoly)
  DPoly1 ==>  DistributedMultivariatePolynomial(vl,Q)
  DPoly  ==>  DistributedMultivariatePolynomial(vl,F)
  NNI    ==>  NonNegativeInteger
  Ideal  ==  PolynomialIdeals(Q,Expon,OV,DPoly1)
  FIdeal ==  PolynomialIdeals(F,Expon,OV,DPoly)
  Fun0   ==  Union("zeroPrimDecomp","zeroRadComp")
  GenPos ==  Record(changeval:List Z,genideal:FIdeal)

  SIG ==> with

    zeroDimPrime? : Ideal -> Boolean
      ++ zeroDimPrime?(I) tests if the ideal I is a 0-dimensional prime.

    zeroDimPrimary? : Ideal -> Boolean
      ++ zeroDimPrimary?(I) tests if the ideal I is 0-dimensional primary.

    prime? : Ideal -> Boolean
      ++ prime?(I) tests if the ideal I is prime.

    radical : Ideal -> Ideal
      ++ radical(I) returns the radical of the ideal I.

    primaryDecomp : Ideal -> List(Ideal)
      ++ primaryDecomp(I) returns a list of primary ideals such that their
      ++ intersection is the ideal I.

    contract : (Ideal,List OV ) -> Ideal
      ++ contract(I,lvar) contracts the ideal I to the polynomial ring
      ++ \spad{F[lvar]}.

  CODE ==> add

     import MPolyCatRationalFunctionFactorizer(Expon,OV,Z,DPoly)
     import GroebnerPackage(F,Expon,OV,DPoly)
     import GroebnerPackage(Q,Expon,OV,DPoly1)

                  ----  Local  Functions  -----
     genPosLastVar       :    (FIdeal,List OV)     -> GenPos
     zeroPrimDecomp      :    (FIdeal,List OV)     -> List(FIdeal)
     zeroRadComp         :    (FIdeal,List OV)     -> FIdeal
     zerodimcase         :    (FIdeal,List OV)     -> Boolean
     is0dimprimary       :    (FIdeal,List OV)     -> Boolean
     backGenPos          : (FIdeal,List Z,List OV) -> FIdeal
     reduceDim           : (Fun0,FIdeal,List OV)   -> List FIdeal
     findvar             :   (FIdeal,List OV)      -> OV
     testPower           :    (SUP,OV,FIdeal)      -> Boolean
     goodPower           :     (DPoly,FIdeal)  -> Record(spol:DPoly,id:FIdeal)
     pushdown            :      (DPoly,OV)        -> DPoly
     pushdterm           :     (DPoly,OV,Z)       -> DPoly
     pushup              :      (DPoly,OV)        -> DPoly
     pushuterm           :    (DPoly,SE,OV)       -> DPoly
     pushucoef           :       (UP,OV)          -> DPoly
     trueden             :        (P,SE)          -> P
     rearrange           :       (List OV)        -> List OV
     deleteunit          :      List FIdeal        -> List FIdeal
     ismonic             :      (DPoly,OV)        -> Boolean


     MPCFQF ==> MPolyCatFunctions2(OV,Expon,Expon,Q,F,DPoly1,DPoly)
     MPCFFQ ==> MPolyCatFunctions2(OV,Expon,Expon,F,Q,DPoly,DPoly1)

     convertQF(a:Q) : F == ((numer a):: F)/((denom a)::F)
     convertFQ(a:F) : Q == (ground numer a)/(ground denom a)

     internalForm(I:Ideal) : FIdeal ==
       Id:=generators I
       nId:=[map(convertQF,poly)$MPCFQF for poly in Id]
       groebner? I => groebnerIdeal nId
       ideal nId

     externalForm(I:FIdeal) : Ideal ==
       Id:=generators I
       nId:=[map(convertFQ,poly)$MPCFFQ for poly in Id]
       groebner? I => groebnerIdeal nId
       ideal nId

     lvint:=[variable(xx)::OV for xx in vl]
     nvint1:=(#lvint-1)::NNI

     deleteunit(lI: List FIdeal) : List FIdeal ==
       [I for I in lI | _^ element?(1$DPoly,I)]

     rearrange(vlist:List OV) :List OV ==
       vlist=[] => vlist
       sort((z1,z2)+->z1>z2,setDifference(lvint,setDifference(lvint,vlist)))

            ---- radical of a 0-dimensional ideal  ----
     zeroRadComp(I:FIdeal,truelist:List OV) : FIdeal ==
       truelist=[] => I
       Id:=generators I
       x:OV:=truelist.last
       #Id=1 =>
         f:=Id.first
         g:= (f exquo (gcd (f,differentiate(f,x))))::DPoly
         groebnerIdeal([g])
       y:=truelist.first
       px:DPoly:=x::DPoly
       py:DPoly:=y::DPoly
       f:=Id.last
       g:= (f exquo (gcd (f,differentiate(f,x))))::DPoly
       Id:=groebner(cons(g,remove(f,Id)))
       lf:=Id.first
       pv:DPoly:=0
       pw:DPoly:=0
       while degree(lf,y)^=1 repeat
         val:=random()$Z rem 23
         pv:=px+val*py
         pw:=px-val*py
         Id:=groebner([(univariate(h,x)).pv for h in Id])
         lf:=Id.first
       ris:= generators(zeroRadComp(groebnerIdeal(Id.rest),truelist.rest))
       ris:=cons(lf,ris)
       if pv^=0 then
         ris:=[(univariate(h,x)).pw for h in ris]
       groebnerIdeal(groebner ris)

          ----  find the power that stabilizes (I:s)  ----
     goodPower(s:DPoly,I:FIdeal) : Record(spol:DPoly,id:FIdeal) ==
       f:DPoly:=s
       I:=groebner I
       J:=generators(JJ:= (saturate(I,s)))
       while _^ in?(ideal([f*g for g in J]),I) repeat f:=s*f
       [f,JJ]

              ----  is the ideal zerodimensional?  ----
       ----     the "true variables" are  in truelist         ----
     zerodimcase(J:FIdeal,truelist:List OV) : Boolean ==
       element?(1,J) => true
       truelist=[] => true
       n:=#truelist
       Jd:=groebner generators J
       for x in truelist while Jd^=[] repeat
         f := Jd.first
         Jd:=Jd.rest
         if ((y:=mainVariable f) case "failed") or (y::OV ^=x )
              or _^ (ismonic (f,x)) then return false
         while Jd^=[] and (mainVariable Jd.first)::OV=x repeat Jd:=Jd.rest
         if Jd=[] and position(x,truelist)<n then return false
       true

         ----  choose the variable for the reduction step  ----
                    --- J groebnerner in gen pos  ---
     findvar(J:FIdeal,truelist:List OV) : OV ==
       lmonicvar:List OV :=[]
       for f in generators J repeat
         t:=f - reductum f
         vt:List OV :=variables t
         if #vt=1 then lmonicvar:=setUnion(vt,lmonicvar)
       badvar:=setDifference(truelist,lmonicvar)
       badvar.first

            ---- function for the "reduction step  ----
     reduceDim(flag:Fun0,J:FIdeal,truelist:List OV) : List(FIdeal) ==
       element?(1,J) => [J]
       zerodimcase(J,truelist) =>
         (flag case "zeroPrimDecomp") => zeroPrimDecomp(J,truelist)
         (flag case "zeroRadComp") => [zeroRadComp(J,truelist)]
       x:OV:=findvar(J,truelist)
       Jnew:=[pushdown(f,x) for f in generators J]
       Jc: List FIdeal :=[]
       Jc:=reduceDim(flag,groebnerIdeal Jnew,remove(x,truelist))
       res1:=[ideal([pushup(f,x) for f in generators idp]) for idp in Jc]
       s:=pushup((_*/[leadingCoefficient f for f in Jnew])::DPoly,x)
       degree(s,x)=0 => res1
       res1:=[saturate(II,s) for II in res1]
       good:=goodPower(s,J)
       sideal := groebnerIdeal(groebner(cons(good.spol,generators J)))
       in?(good.id, sideal) => res1
       sresult:=reduceDim(flag,sideal,truelist)
       for JJ in sresult repeat
          if not(in?(good.id,JJ)) then res1:=cons(JJ,res1)
       res1

      ----  Primary Decomposition for 0-dimensional ideals  ----
     zeroPrimDecomp(I:FIdeal,truelist:List OV): List(FIdeal) ==
       truelist=[] => list I
       newJ:=genPosLastVar(I,truelist);lval:=newJ.changeval;
       J:=groebner newJ.genideal
       x:=truelist.last
       Jd:=generators J
       g:=Jd.last
       lfact:= factors factor(g)
       ris:List FIdeal:=[]
       for ef in lfact repeat
         g:DPoly:=(ef.factor)**(ef.exponent::NNI)
         J1:= groebnerIdeal(groebner cons(g,Jd))
         if _^ (is0dimprimary (J1,truelist)) then
                                   return zeroPrimDecomp(I,truelist)
         ris:=cons(groebner backGenPos(J1,lval,truelist),ris)
       ris

             ----  radical of an Ideal  ----
     radical(I:Ideal) : Ideal ==
       J:=groebner(internalForm I)
       truelist:=rearrange("setUnion"/[variables f for f in generators J])
       truelist=[] => externalForm J
       externalForm("intersect"/reduceDim("zeroRadComp",J,truelist))


-- the following functions are used to "push" x in the coefficient ring -

        ----  push x in the coefficient domain for a polynomial ----
     pushdown(g:DPoly,x:OV) : DPoly ==
       rf:DPoly:=0$DPoly
       i:=position(x,lvint)
       while g^=0 repeat
         g1:=reductum g
         rf:=rf+pushdterm(g-g1,x,i)
         g := g1
       rf

      ----  push x in the coefficient domain for a term ----
     pushdterm(t:DPoly,x:OV,i:Z):DPoly ==
       n:=degree(t,x)
       xp:=convert(x)@SE
       cf:=monomial(1,xp,n)$P :: F
       newt := t exquo monomial(1,x,n)$DPoly
       cf * newt::DPoly

               ----  push back the variable  ----
     pushup(f:DPoly,x:OV) :DPoly ==
       h:=1$P
       rf:DPoly:=0$DPoly
       g := f
       xp := convert(x)@SE
       while g^=0 repeat
         h:=lcm(trueden(denom leadingCoefficient g,xp),h)
         g:=reductum g
       f:=(h::F)*f
       while f^=0 repeat
         g:=reductum f
         rf:=rf+pushuterm(f-g,xp,x)
         f:=g
       rf

     trueden(c:P,x:SE) : P ==
       degree(c,x) = 0 => 1
       c

      ----  push x back from the coefficient domain for a term ----
     pushuterm(t:DPoly,xp:SE,x:OV):DPoly ==
       pushucoef((univariate(numer leadingCoefficient t,xp)$P), x)*
         monomial(inv((denom leadingCoefficient t)::F),degree t)$DPoly


     pushucoef(c:UP,x:OV):DPoly ==
       c = 0 => 0
       monomial((leadingCoefficient c)::F::DPoly,x,degree c) +
          pushucoef(reductum c,x)

           -- is the 0-dimensional ideal I primary ?  --
               ----  internal function  ----
     is0dimprimary(J:FIdeal,truelist:List OV) : Boolean ==
       element?(1,J) => true
       Jd:=generators(groebner J)
       #(factors factor Jd.last)^=1 => return false
       i:=subtractIfCan(#truelist,1)
       (i case "failed") => return true
       JR:=(reverse Jd);JM:=groebnerIdeal([JR.first]);JP:List(DPoly):=[]
       for f in JR.rest repeat
         if _^ ismonic(f,truelist.i) then
           if _^ inRadical?(f,JM) then return false
           JP:=cons(f,JP)
          else
           x:=truelist.i
           i:=(i-1)::NNI
           if _^ testPower(univariate(f,x),x,JM) then return false
           JM :=groebnerIdeal(append(cons(f,JP),generators JM))
       true

         ---- Functions for the General Position step  ----

       ----  put the ideal in general position  ----
     genPosLastVar(J:FIdeal,truelist:List OV):GenPos ==
       x := last truelist ;lv1:List OV :=remove(x,truelist)
       ranvals:List(Z):=[(random()$Z rem 23) for vv in lv1]
       val:=_+/[rv*(vv::DPoly)  for vv in lv1 for rv in ranvals]
       val:=val+(x::DPoly)
       [ranvals,groebnerIdeal(groebner([(univariate(p,x)).val
                             for p in generators J]))]$GenPos


             ----  convert back the ideal  ----
     backGenPos(I:FIdeal,lval:List Z,truelist:List OV) : FIdeal ==
       lval=[] => I
       x := last truelist ;lv1:List OV:=remove(x,truelist)
       val:=-(_+/[rv*(vv::DPoly) for vv in lv1 for rv in lval])
       val:=val+(x::DPoly)
       groebnerIdeal
         (groebner([(univariate(p,x)).val for p in generators I ]))

     ismonic(f:DPoly,x:OV) : Boolean == 
       ground? leadingCoefficient(univariate(f,x))

         ---- test if f is power of a linear mod (rad J) ----
                    ----  f is monic  ----
     testPower(uf:SUP,x:OV,J:FIdeal) : Boolean ==
       df:=degree(uf)
       trailp:DPoly := inv(df:Z ::F) *coefficient(uf,(df-1)::NNI)
       linp:SUP:=(monomial(1$DPoly,1$NNI)$SUP +
                  monomial(trailp,0$NNI)$SUP)**df
       g:DPoly:=multivariate(uf-linp,x)
       inRadical?(g,J)


                    ----  Exported Functions  ----

           -- is the 0-dimensional ideal I prime ?  --
     zeroDimPrime?(I:Ideal) : Boolean ==
       J:=groebner((genPosLastVar(internalForm I,lvint)).genideal)
       element?(1,J) => true
       n:NNI:=#vl;i:NNI:=1
       Jd:=generators J
       #Jd^=n => false
       for f in Jd repeat
         if _^ ismonic(f,lvint.i) then return false
         if i<n and (degree univariate(f,lvint.i))^=1 then return false
         i:=i+1
       g:=Jd.n
       #(lfact:=factors(factor g)) >1 => false
       lfact.1.exponent =1


           -- is the 0-dimensional ideal I primary ?  --
     zeroDimPrimary?(J:Ideal):Boolean ==
       is0dimprimary(internalForm J,lvint)

             ----  Primary Decomposition of I  -----

     primaryDecomp(I:Ideal) : List(Ideal) ==
       J:=groebner(internalForm I)
       truelist:=rearrange("setUnion"/[variables f for f in generators J])
       truelist=[] => [externalForm J]
       [externalForm II for II in reduceDim("zeroPrimDecomp",J,truelist)]

          ----  contract I to the ring with lvar variables  ----
     contract(I:Ideal,lvar: List OV) : Ideal ==
       Id:= generators(groebner I)
       empty?(Id) => I
       fullVars:= "setUnion"/[variables g for g in Id]
       fullVars = lvar => I
       n:= # lvar
       #fullVars < n  => error "wrong vars"
       n=0 => I
       newVars:=
         append([vv for vv in fullVars| ^member?(vv,lvar)]$List(OV),lvar)
       subsVars := [monomial(1,vv,1)$DPoly1 for vv in newVars]
       lJ:= [eval(g,fullVars,subsVars) for g in Id]
       J := groebner(lJ)
       J=[1] => groebnerIdeal J
       J=[0] => groebnerIdeal empty()
       J:=[f for f in J| member?(mainVariable(f)::OV,newVars)]
       fullPol :=[monomial(1,vv,1)$DPoly1 for vv in fullVars]
       groebnerIdeal([eval(gg,newVars,fullPol) for gg in J])