This file is indexed.

/usr/share/axiom-20170501/src/algebra/IFARRAY.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
)abbrev domain IFARRAY IndexedFlexibleArray
++ Author: Michael Monagan July/87, modified SMW June/91
++ Description:
++ A FlexibleArray is the notion of an array intended to allow for growth
++ at the end only.  Hence the following efficient operations\br
++ \spad{append(x,a)} meaning append item x at the end of the array \spad{a}\br
++ \spad{delete(a,n)} meaning delete the last item from the array \spad{a}\br
++ Flexible arrays support the other operations inherited from
++ \spadtype{ExtensibleLinearAggregate}. However, these are not efficient.
++ Flexible arrays combine the \spad{O(1)} access time property of arrays
++ with growing and shrinking at the end in \spad{O(1)} (average) time.
++ This is done by using an ordinary array which may have zero or more
++ empty slots at the end.  When the array becomes full it is copied
++ into a new larger (50% larger) array.  Conversely, when the array
++ becomes less than 1/2 full, it is copied into a smaller array.
++ Flexible arrays provide for an efficient implementation of many
++ data structures in particular heaps, stacks and sets.

IndexedFlexibleArray(S,mn) : SIG == CODE where
  S : Type
  mn : Integer

  A ==> PrimitiveArray S
  I ==> Integer
  N ==> NonNegativeInteger
  U ==> UniversalSegment Integer

  SIG ==> Join(OneDimensionalArrayAggregate S,ExtensibleLinearAggregate S) with

    flexibleArray : List S -> %
     ++ flexibleArray(l) creates a flexible array from the list of elements l
     ++
     ++X T1:=IndexedFlexibleArray(Integer,20)
     ++X flexibleArray([i for i in 1..10])$T1

    physicalLength : % -> NonNegativeInteger
     ++ physicalLength(x) returns the number of elements x can 
     ++ accomodate before growing
     ++
     ++X T1:=IndexedFlexibleArray(Integer,20)
     ++X t2:=flexibleArray([i for i in 1..10])$T1
     ++X physicalLength t2

    physicalLength_! : (%, I) -> %
     ++ physicalLength!(x,n) changes the physical length of x to be n and
     ++ returns the new array.
     ++
     ++X T1:=IndexedFlexibleArray(Integer,20)
     ++X t2:=flexibleArray([i for i in 1..10])$T1
     ++X physicalLength!(t2,15)

    shrinkable : Boolean -> Boolean
     ++ shrinkable(b) sets the shrinkable attribute of flexible arrays to b
     ++ and returns the previous value
     ++
     ++X T1:=IndexedFlexibleArray(Integer,20)
     ++X shrinkable(false)$T1

  CODE ==> add

    Rep := Record(physLen:I, logLen:I, f:A)
    shrinkable? : Boolean := true
    growAndFill : (%, I, S) -> %
    growWith    : (%, I, S) -> %
    growAdding  : (%, I, %) -> %
    shrink: (%, I)    -> %
    newa  : (N, A) -> A

    physicalLength(r) == (r.physLen) pretend NonNegativeInteger

    physicalLength_!(r, n) ==
       r.physLen = 0  => error "flexible array must be non-empty"
       growWith(r, n, r.f.0)

    empty()      == [0, 0, empty()]

    #r           == (r.logLen)::N

    fill_!(r, x) == (fill_!(r.f, x); r)

    maxIndex r   == r.logLen - 1 + mn

    minIndex r   == mn

    new(n, a)    == [n, n, new(n, a)]

    shrinkable(b) ==
      oldval := shrinkable?
      shrinkable? := b
      oldval

    flexibleArray l ==
       n := #l
       n = 0 => empty()
       x := l.1
       a := new(n,x)
       for i in mn + 1..mn + n-1 for y in rest l repeat a.i := y
       a

    -- local utility operations
    newa(n, a) ==
       zero? n => empty()
       new(n, a.0)

    growAdding(r, b, s) ==
       b = 0 => r
       #r > 0 => growAndFill(r, b, (r.f).0)
       #s > 0 => growAndFill(r, b, (s.f).0)
       error "no default filler element"

    growAndFill(r, b, x) ==
       (r.logLen := r.logLen + b) <= r.physLen => r
       -- enlarge by 50% + b
       n := r.physLen + r.physLen quo 2 + 1
       if r.logLen > n then n := r.logLen
       growWith(r, n, x)

    growWith(r, n, x) ==
       y := new(n::N, x)$PrimitiveArray(S)
       a := r.f
       for k in 0 .. r.physLen-1 repeat y.k := a.k
       r.physLen := n
       r.f := y
       r

    shrink(r, i) ==
       r.logLen := r.logLen - i
       negative?(n := r.logLen) => error "internal bug in flexible array"
       2*n+2 > r.physLen => r
       not shrinkable? => r
       if n < r.logLen 
         then error "cannot shrink flexible array to indicated size"
       n = 0 => empty()
       r.physLen := n
       y := newa(n::N, a := r.f)
       for k in 0 .. n-1 repeat y.k := a.k
       r.f := y
       r

    copy r ==
       n := #r
       a := r.f
       v := newa(n, a := r.f)
       for k in 0..n-1 repeat v.k := a.k
       [n, n, v]


    elt(r:%, i:I) ==
       i < mn or i >= r.logLen + mn =>
           error "index out of range"
       r.f.(i-mn)

    setelt(r:%, i:I, x:S) ==
       i < mn or i >= r.logLen + mn =>
           error "index out of range"
       r.f.(i-mn) := x

    -- operations inherited from extensible aggregate

    merge(g, a, b)   == merge_!(g, copy a, b)

    concat(x:S, r:%) == insert_!(x, r, mn)

    concat_!(r:%, x:S) ==
       growAndFill(r, 1, x)
       r.f.(r.logLen-1) := x
       r

    concat_!(a:%, b:%) ==
       if eq?(a, b) then b := copy b
       n := #a
       growAdding(a, #b, b)
       copyInto_!(a, b, n + mn)

    remove_!(g:(S->Boolean), a:%) ==
       k:I := 0
       for i in 0..maxIndex a - mn repeat
          if not g(a.i) then (a.k := a.i; k := k+1)
       shrink(a, #a - k)

    delete_!(r:%, i1:I) ==
       i := i1 - mn
       i < 0 or i > r.logLen => error "index out of range"
       for k in i..r.logLen-2 repeat r.f.k := r.f.(k+1)
       shrink(r, 1)

    delete_!(r:%, i:U) ==
       l := lo i - mn; m := maxIndex r - mn
       h := (hasHi i => hi i - mn; m)
       l < 0 or h > m => error "index out of range"
       for j in l.. for k in h+1..m repeat r.f.j := r.f.k
       shrink(r, max(0,h-l+1))

    insert_!(x:S, r:%, i1:I):% ==
       i := i1 - mn
       n := r.logLen
       i < 0 or i > n => error "index out of range"
       growAndFill(r, 1, x)
       for k in n-1 .. i by -1 repeat r.f.(k+1) := r.f.k
       r.f.i := x
       r

    insert_!(a:%, b:%, i1:I):% ==
       i := i1 - mn
       if eq?(a, b) then b := copy b
       m := #a; n := #b
       i < 0 or i > n => error "index out of range"
       growAdding(b, m, a)
       for k in n-1 .. i by -1 repeat b.f.(m+k) := b.f.k
       for k in m-1 .. 0 by -1 repeat b.f.(i+k) := a.f.k
       b

    merge_!(g, a, b) ==
       m := #a; n := #b; growAdding(a, n, b)
       for i in m-1..0 by -1 for j in m+n-1.. by -1 repeat a.f.j := a.f.i
       i := n; j := 0
       for k in 0.. while i < n+m and j < n repeat
          if g(a.f.i,b.f.j) then (a.f.k := a.f.i; i := i+1)
          else (a.f.k := b.f.j; j := j+1)
       for k in k.. for j in j..n-1 repeat a.f.k := b.f.j
       a

    select_!(g:(S->Boolean), a:%) ==
       k:I := 0
       for i in 0..maxIndex a - mn repeat_
          if g(a.f.i) then (a.f.k := a.f.i;k := k+1)
       shrink(a, #a - k)

    if S has SetCategory then

      removeDuplicates_! a ==
         ct := #a
         ct < 2 => a

         i     := mn
         nlim  := mn + ct
         nlim0 := nlim
         while i < nlim repeat
            j := i+1
            for k in j..nlim-1 | a.k ^= a.i repeat
                a.j := a.k
                j := j+1
            nlim := j
            i := i+1
         nlim ^= nlim0 => delete_!(a, i..)
         a