This file is indexed.

/usr/share/axiom-20170501/src/algebra/INBFF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
)abbrev package INBFF InnerNormalBasisFieldFunctions
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated: 31 March 1991
++ References:
++ Grab92 Finite Fields in Axiom
++ Lidl83 Finite Field, Encyclopedia of Mathematics and Its Applications
++ Stin90 Some observations on parallel Algorithms for fast exponentiation 
++        in GF(2^n)
++ Itoh88 A fast algorithm for computing multiplicative inverses
++        in GF(2^m) using normal bases
++ Description:
++ InnerNormalBasisFieldFunctions(GF) (unexposed):
++ This package has functions used by
++ every normal basis finite field extension domain.

InnerNormalBasisFieldFunctions(GF) : SIG == CODE where
  GF    : FiniteFieldCategory       -- the ground field

  PI   ==> PositiveInteger
  NNI  ==> NonNegativeInteger
  I    ==> Integer
  SI   ==> SingleInteger
  SUP  ==> SparseUnivariatePolynomial
  VGF  ==> Vector GF
  M    ==> Matrix
  V    ==> Vector
  L    ==> List
  OUT  ==> OutputForm
  TERM ==> Record(value:GF,index:SI)
  MM   ==> ModMonic(GF,SUP GF)

  SIG ==> with

    setFieldInfo : (V L TERM,GF) -> Void
      ++ setFieldInfo(m,p) initializes the field arithmetic, where m is
      ++ the multiplication table and p is the respective normal element
      ++ of the ground field GF.

    random : PI -> VGF
      ++ random(n) creates a vector over the ground field with random entries.

    index : (PI,PI) -> VGF
      ++ index(n,m) is a index function for vectors of length n over
      ++ the ground field.

    pol : VGF -> SUP GF
      ++ pol(v) turns the vector \spad{[v0,...,vn]} into the polynomial
      ++ \spad{v0+v1*x+ ... + vn*x**n}.

    xn : NNI -> SUP GF
      ++ xn(n) returns the polynomial \spad{x**n-1}.

    dAndcExp : (VGF,NNI,SI) -> VGF
      ++ dAndcExp(v,n,k) computes \spad{v**e} interpreting v as an element of
      ++ normal basis field. A divide and conquer algorithm similar to the
      ++ one from D.R.Stinson,
      ++ "Some observations on parallel Algorithms for fast exponentiation in
      ++ GF(2^n)", Siam J. Computation, Vol.19, No.4, pp.711-717, August 1990
      ++ is used. Argument k is a parameter of this algorithm.

    repSq : (VGF,NNI) -> VGF
      ++ repSq(v,e) computes \spad{v**e} by repeated squaring,
      ++ interpreting v as an element of a normal basis field.

    expPot : (VGF,SI,SI) -> VGF
      ++ expPot(v,e,d) returns the sum from \spad{i = 0} to
      ++ \spad{e - 1} of \spad{v**(q**i*d)}, interpreting
      ++ v as an element of a normal basis field and where q is
      ++ the size of the ground field.
      ++ Note that for a description of the algorithm, see 
      ++ T.Itoh and S.Tsujii,
      ++ "A fast algorithm for computing multiplicative inverses in GF(2^m)
      ++ using normal bases",
      ++ Information and Computation 78, pp.171-177, 1988.

    qPot : (VGF,I) -> VGF
      ++ qPot(v,e) computes \spad{v**(q**e)}, interpreting v as an element of
      ++ normal basis field, q the size of the ground field.
      ++ This is done by a cyclic e-shift of the vector v.

-- the semantic of the following functions is obvious from the finite field
-- context, for description see category FAXF

    "**" :(VGF,I) -> VGF
      ++ x**n \undocumented{}
      ++ See \axiomFunFrom{**}{DivisionRing}

    "*" :(VGF,VGF) -> VGF
      ++ x*y \undocumented{}
      ++ See \axiomFunFrom{*}{SemiGroup}

    "/" :(VGF,VGF) -> VGF
      ++ x/y \undocumented{}
      ++ See \axiomFunFrom{/}{Field}

    norm :(VGF,PI) -> VGF
      ++ norm(x,n) \undocumented{}
      ++ See \axiomFunFrom{norm}{FiniteAlgebraicExtensionField}

    trace :(VGF,PI) -> VGF
      ++ trace(x,n) \undocumented{}
      ++ See \axiomFunFrom{trace}{FiniteAlgebraicExtensionField}

    inv : VGF -> VGF
      ++ inv x \undocumented{}
      ++ See \axiomFunFrom{inv}{DivisionRing}

    lookup : VGF -> PI
      ++ lookup(x) \undocumented{}
      ++ See \axiomFunFrom{lookup}{Finite}

    normal? : VGF -> Boolean
      ++ normal?(x) \undocumented{}
      ++ See \axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}

    basis : PI -> V VGF
      ++ basis(n) \undocumented{}
      ++ See \axiomFunFrom{basis}{FiniteAlgebraicExtensionField}

    normalElement : PI -> VGF
      ++ normalElement(n) \undocumented{}
      ++ See \axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}

    minimalPolynomial : VGF -> SUP GF
      ++ minimalPolynomial(x) \undocumented{}
      ++ See \axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}

  CODE ==> add

-- global variables ===================================================

    sizeGF:NNI:=size()$GF
    -- the size of the ground field

    multTable:V L TERM:=new(1,nil()$(L TERM))$(V L TERM)
    -- global variable containing the multiplication table

    trGen:GF:=1$GF
    -- controls the imbedding of the ground field

    logq:List SI:=[0,10::SI,16::SI,20::SI,23::SI,0,28::SI,_
                             30::SI,32::SI,0,35::SI]
    -- logq.i is about 10*log2(i) for the values <12 which
    -- can match sizeGF. It's used by "**"

    expTable:L L SI:=[[],_
        [4::SI,12::SI,48::SI,160::SI,480::SI,0],_
        [8::SI,72::SI,432::SI,0],_
        [18::SI,216::SI,0],_
        [32::SI,480::SI,0],[],_
        [72::SI,0],[98::SI,0],[128::SI,0],[],[200::SI,0]]
    -- expT is used by "**" to optimize the parameter k
    -- before calling dAndcExp(..,..,k)

-- functions ===========================================================

    --  computes a**(-1) = a**((q**extDeg)-2)
    --  see reference of function expPot
    inv(a) ==
      b:VGF:=qPot(expPot(a,(#a-1)::NNI::SI,1::SI)$$,1)$$
      erg:VGF:=inv((a *$$ b).1 *$GF trGen)$GF *$VGF b

    -- "**" decides which exponentiation algorithm will be used, in order to
    -- get the fastest computation. If dAndcExp is used, it chooses the
    -- optimal parameter k for that algorithm.
    a ** ex  ==
      e:NNI:=positiveRemainder(ex,sizeGF**((#a)::PI)-1)$I :: NNI
      zero?(e)$NNI => new(#a,trGen)$VGF
      (e = 1)$NNI  => copy(a)$VGF
      e1:SI:=(length(e)$I)::SI
      sizeGF >$I 11 =>
        q1:SI:=(length(sizeGF)$I)::SI
        logqe:SI:=(e1 quo$SI q1) +$SI 1$SI
        10::SI * (logqe + sizeGF-2) > 15::SI * e1 =>
          repSq(a,e)
        dAndcExp(a,e,1)
      logqe:SI:=((10::SI *$SI e1) quo$SI (logq.sizeGF)) +$SI 1$SI
      k:SI:=1$SI
      expT:List SI:=expTable.sizeGF
      while (logqe >= expT.k) and not zero? expT.k repeat k:=k +$SI 1$SI
      mult:I:=(sizeGF-1) *$I sizeGF **$I ((k-1)pretend NNI) +$I_
              ((logqe +$SI k -$SI 1$SI) quo$SI k)::I -$I 2
      (10*mult) >= (15 * (e1::I)) =>
        repSq(a,e)
      dAndcExp(a,e,k)

    -- computes a**e by repeated squaring
    repSq(b,e) ==
      a:=copy(b)$VGF
      (e = 1) => a
      odd?(e)$I => a * repSq(a*a,(e quo 2) @ NNI)
      repSq(a*a,(e quo 2) @ NNI)

    -- computes a**e using the divide and conquer algorithm similar to the
    -- one from D.R.Stinson,
    -- "Some observations on parallel Algorithms for fast exponentiation in
    -- GF(2^n)", Siam J. Computation, Vol.19, No.4, pp.711-717, August 1990
    dAndcExp(a,e,k) ==
      plist:List VGF:=[copy(a)$VGF]
      qk:I:=sizeGF**(k pretend NNI)
      for j in 2..(qk-1) repeat
        if positiveRemainder(j,sizeGF)=0 then b:=qPot(plist.(j quo sizeGF),1)$$
                            else b:=a *$$ last(plist)$(List VGF)
        plist:=concat(plist,b)
      l:List NNI:=nil()
      ex:I:=e
      while not(ex = 0) repeat
        l:=concat(l,positiveRemainder(ex,qk) pretend NNI)
        ex:=ex quo qk
      if first(l)=0 then erg:VGF:=new(#a,trGen)$VGF
                    else erg:VGF:=plist.(first(l))
      i:SI:=k
      for j in rest(l) repeat
        if j^=0 then erg:=erg *$$ qPot(plist.j,i)$$
        i:=i+k
      erg

    a * b ==
      e:SI:=(#a)::SI
      erg:=zero(#a)$VGF
      for t in multTable.1 repeat
        for j in 1..e repeat
          y:=t.value  -- didn't work without defining x and y
          x:=t.index
          k:SI:=addmod(x,j::SI,e)$SI +$SI 1$SI
          erg.k:=erg.k +$GF a.j *$GF b.j *$GF y
      for i in 1..e-1 repeat
        for j in i+1..e repeat
          for t in multTable.(j-i+1) repeat
            y:=t.value   -- didn't work without defining x and y
            x:=t.index
            k:SI:=addmod(x,i::SI,e)$SI +$SI 1$SI
            erg.k:GF:=erg.k +$GF (a.i *$GF b.j +$GF a.j *$GF b.i) *$GF y
      erg

    lookup(x) ==
      erg:I:=0
      for j in (#x)..1 by -1 repeat
        erg:=(erg * sizeGF) + (lookup(x.j)$GF rem sizeGF)
      erg=0 => (sizeGF**(#x)) :: PI
      erg :: PI

    --  computes the norm of a over GF**d, d must devide extdeg
    --  see reference of function expPot below
    norm(a,d) ==
      dSI:=d::SI
      r:=divide((#a)::SI,dSI)
      not(r.remainder = 0) => error "norm: 2.arg must divide extdeg"
      expPot(a,r.quotient,dSI)$$

    --  computes expPot(a,e,d) = sum form i=0 to e-1 over a**(q**id))
    --  see T.Itoh and S.Tsujii,
    --  "A fast algorithm for computing multiplicative inverses in GF(2^m)
    --   using normal bases",
    --  Information and Computation 78, pp.171-177, 1988
    expPot(a,e,d) ==
      deg:SI:=(#a)::SI
      e=1 => copy(a)$VGF
      k2:SI:=d
      y:=copy(a)
      if bit?(e,0) then
        erg:=copy(y)
        qpot:SI:=k2
      else
        erg:=new(#a,inv(trGen)$GF)$VGF
        qpot:SI:=0
      for k in 1..length(e) repeat
        y:= y *$$ qPot(y,k2)
        k2:=addmod(k2,k2,deg)$SI
        if bit?(e,k) then
          erg:=erg *$$ qPot(y,qpot)
          qpot:=addmod(qpot,k2,deg)$SI
      erg

-- computes qPot(a,n) = a**(q**n), q=size of GF
    qPot(e,n) ==
      ei:=(#e)::SI
      m:SI:= positiveRemainder(n::SI,ei)$SI
      zero?(m) => e
      e1:=zero(#e)$VGF
      for i in m+1..ei repeat e1.i:=e.(i-m)
      for i in 1..m    repeat e1.i:=e.(ei+i-m)
      e1

    trace(a,d) ==
      dSI:=d::SI
      r:=divide((#a)::SI,dSI)$SI
      not(r.remainder = 0) => error "trace: 2.arg must divide extdeg"
      v:=copy(a.(1..dSI))$VGF
      sSI:SI:=r.quotient
      for i in 1..dSI repeat
        for j in 1..sSI-1 repeat
          v.i:=v.i+a.(i+j::SI*dSI)
      v

    random(n) ==
      v:=zero(n)$VGF
      for i in 1..n repeat v.i:=random()$GF
      v


    xn(m) == monomial(1,m)$(SUP GF) - 1$(SUP GF)

    normal?(x) ==
      gcd(xn(#x),pol(x))$(SUP GF) = 1 => true
      false

    x:VGF / y:VGF == x *$$ inv(y)$$

    setFieldInfo(m,n) ==
      multTable:=m
      trGen:=n
      void()$Void

    minimalPolynomial(x) ==
      dx:=#x
      y:=new(#x,inv(trGen)$GF)$VGF
      m:=zero(dx,dx+1)$(M GF)
      for i in 1..dx+1 repeat
        dy:=#y
        for j in 1..dy repeat
          for k in 0..((dx quo dy)-1) repeat
            qsetelt_!(m,j+k*dy,i,y.j)$(M GF)
        y:=y *$$ x
      v:=first nullSpace(m)$(M GF)
      pol(v)$$

    basis(n) ==
      bas:(V VGF):=new(n,zero(n)$VGF)$(V VGF)
      for i in 1..n repeat
        uniti:=zero(n)$VGF
        qsetelt_!(uniti,i,1$GF)$VGF
        qsetelt_!(bas,i,uniti)$(V VGF)
      bas

    normalElement(n) ==
       v:=zero(n)$VGF
       qsetelt_!(v,1,1$GF)
       v

    index(degm,n) ==
      m:I:=n rem$I (sizeGF ** degm)
      erg:=zero(degm)$VGF
      for j in 1..degm repeat
        erg.j:=index((sizeGF+(m rem sizeGF)) pretend PI)$GF
        m:=m quo sizeGF
      erg

    pol(x) ==
      +/[monomial(x.i,(i-1)::NNI)$(SUP GF) for i in 1..(#x)::I]