This file is indexed.

/usr/share/axiom-20170501/src/algebra/INFCLCT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
)abbrev category INFCLCT InfinitlyClosePointCategory
++ Authors: Gaetan Hache
++ Date Created: may 1997 
++ Date Last Updated: April 2010, by Tim Daly
++ Description: 
++ This category is part of the PAFF package
InfinitlyClosePointCategory(K,symb,PolyRing,E,ProjPt,PCS,Plc,Divisor,BLMET) :
 Category == SIG where
  K : Field
  symb : List(Symbol)
  PolyRing : PolynomialCategory(K,E,OrderedVariableList(symb))
  E : DirectProductCategory(#symb,NonNegativeInteger)
  ProjPt : ProjectiveSpaceCategory(K)
  PCS : LocalPowerSeriesCategory(K)
  Plc : PlacesCategory(K,PCS)
  DIVISOR : DivisorCategory(Plc)
  BLMET : BlowUpMethodCategory

  bls ==> ['X,'Y]
  BlUpRing ==> DistributedMultivariatePolynomial(bls , K)
  AFP ==> AffinePlane(K)

  SIG ==> SetCategoryWithDegree with

    create : (ProjPt ,  BlUpRing, AFP , NonNegativeInteger,BLMET, _
              NonNegativeInteger,  DIVISOR,K,Symbol) -> %  
      ++ create(p,b,a,n1,c,n2,d,k,s) an infinitly close point

    create : (ProjPt,PolyRing) -> %
      
    setpoint_! : (%,ProjPt) -> ProjPt

    setcurve_! : (%,BlUpRing) -> BlUpRing

    setlocalPoint_! : (%,AFP) -> AFP
 
    setsubmult_! : (%, NonNegativeInteger) -> NonNegativeInteger

    setmult_! : (%,NonNegativeInteger) -> NonNegativeInteger
 
    setchart_! : (%,BLMET) -> BLMET -- CHH

    setexcpDiv_! : (%,DIVISOR) -> DIVISOR

    setlocalParam_! : (%,List PCS) -> List(PCS)

    setsymbName_! : (%,Symbol) -> Symbol
 
    subMultV : % -> NonNegativeInteger

    localParamV : % -> List PCS

    symbNameV : % -> Symbol

    pointV :  % -> ProjPt
      ++ pointV(p) returns the infinitly close point.

    curveV :  % -> BlUpRing
      ++ curveV(p) returns the defining polynomial of the strict transform 
      ++ on which lies the corresponding infinitly close point.

    localPointV : % -> AFP
      ++ localPointV(p) returns the coordinates of the local infinitly 
      ++ close point

    multV : % -> NonNegativeInteger
      ++ multV(p) returns the multiplicity of the infinitly close point.

    chartV : % -> BLMET -- CHH
      ++ chartV(p) is the chart of the infinitly close point. The first integer 
      ++ correspond to variable defining the exceptional line, the last one 
      ++ the affine  neighboorhood and the second one is the 
      ++ remaining integer. For example [1,2,3] means that
      ++ Z=1, X=X and Y=XY. [2,3,1] means that X=1, Y=Y and Z=YZ.     

    excpDivV : % -> DIVISOR
      ++ excpDivV returns the exceptional divisor of the infinitly close point.

    actualExtensionV : % -> K