/usr/share/axiom-20170501/src/algebra/INFORM.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | )abbrev domain INFORM InputForm
++ Author: Manuel Bronstein
++ Date Last Updated: 19 April 1991
++ Description:
++ Domain of parsed forms which can be passed to the interpreter.
++ This is also the interface between algebra code and facilities
++ in the interpreter.
--)boot $noSubsumption := true
InputForm() : SIG == CODE where
SIG ==> Join(
SExpressionCategory(String,Symbol,Integer,DoubleFloat,OutputForm),
ConvertibleTo SExpression) with
interpret: % -> Any
++ interpret(f) passes f to the interpreter.
convert : SExpression -> %
++ convert(s) makes s into an input form.
binary : (%, List %) -> %
++ \spad{binary(op, [a1,...,an])} returns the input form
++ corresponding to \spad{a1 op a2 op ... op an}.
++
++X a:=[1,2,3]::List(InputForm)
++X binary(_+::InputForm,a)
function : (%, List Symbol, Symbol) -> %
++ \spad{function(code, [x1,...,xn], f)} returns the input form
++ corresponding to \spad{f(x1,...,xn) == code}.
lambda : (%, List Symbol) -> %
++ \spad{lambda(code, [x1,...,xn])} returns the input form
++ corresponding to \spad{(x1,...,xn) +-> code} if \spad{n > 1},
++ or to \spad{x1 +-> code} if \spad{n = 1}.
"+" : (%, %) -> %
++ \spad{a + b} returns the input form corresponding to \spad{a + b}.
"*" : (%, %) -> %
++ \spad{a * b} returns the input form corresponding to \spad{a * b}.
"/" : (%, %) -> %
++ \spad{a / b} returns the input form corresponding to \spad{a / b}.
"**" : (%, NonNegativeInteger) -> %
++ \spad{a ** b} returns the input form corresponding to \spad{a ** b}.
"**" : (%, Integer) -> %
++ \spad{a ** b} returns the input form corresponding to \spad{a ** b}.
0 : constant -> %
++ \spad{0} returns the input form corresponding to 0.
1 : constant -> %
++ \spad{1} returns the input form corresponding to 1.
flatten : % -> %
++ flatten(s) returns an input form corresponding to s with
++ all the nested operations flattened to triples using new
++ local variables.
++ If s is a piece of code, this speeds up
++ the compilation tremendously later on.
unparse : % -> String
++ unparse(f) returns a string s such that the parser
++ would transform s to f.
++ Error: if f is not the parsed form of a string.
parse : String -> %
++ parse(s) is the inverse of unparse. It parses a string to InputForm.
declare : List % -> Symbol
++ declare(t) returns a name f such that f has been
++ declared to the interpreter to be of type t, but has
++ not been assigned a value yet.
++ Note: t should be created as \spad{devaluate(T)$Lisp} where T is the
++ actual type of f (this hack is required for the case where
++ T is a mapping type).
compile : (Symbol, List %) -> Symbol
++ \spad{compile(f, [t1,...,tn])} forces the interpreter to compile
++ the function f with signature \spad{(t1,...,tn) -> ?}.
++ returns the symbol f if successful.
++ Error: if f was not defined beforehand in the interpreter,
++ or if the ti's are not valid types, or if the compiler fails.
CODE ==> SExpression add
Rep := SExpression
mkProperOp: Symbol -> %
strsym : % -> String
tuplify : List Symbol -> %
flatten0 : (%, Symbol, NonNegativeInteger) ->
Record(lst: List %, symb:%)
0 == convert(0::Integer)
1 == convert(1::Integer)
convert(x:%):SExpression == x pretend SExpression
convert(x:SExpression):% == x
conv(ll : List %): % ==
convert(ll pretend List SExpression)$SExpression pretend %
lambda(f,l) == conv([convert("+->"::Symbol),tuplify l,f]$List(%))
interpret x ==
v := interpret(x)$Lisp
mkObjFn(unwrap(objValFn(v)$Lisp)$Lisp, objModeFn(v)$Lisp)$Lisp
convert(x:DoubleFloat):% ==
zero? x => 0
(x = 1) => 1
convert(x)$Rep
flatten s ==
-- will not compile if I use 'or'
atom? s => s
every?(atom?,destruct s)$List(%) => s
sy := new()$Symbol
n:NonNegativeInteger := 0
l2 := [flatten0(x, sy, n := n + 1) for x in rest(l := destruct s)]
conv(concat(convert("SEQ"::Symbol)@%,
concat(concat [u.lst for u in l2], conv(
[convert("exit"::Symbol)@%, 1$%, conv(concat(first l,
[u.symb for u in l2]))@%]$List(%))@%)))@%
flatten0(s, sy, n) ==
atom? s => [nil(), s]
a := convert(concat(string sy, convert(n)@String)::Symbol)@%
l2 := [flatten0(x, sy, n := n+1) for x in rest(l := destruct s)]
[concat(concat [u.lst for u in l2], conv([convert(
"LET"::Symbol)@%, a, conv(concat(first l,
[u.symb for u in l2]))@%]$List(%))@%), a]
strsym s ==
string? s => string s
symbol? s => string symbol s
error "strsym: form is neither a string or symbol"
-- given a function this will attempt to recreate the input string
unparse x ==
atom?(s:% := unparseInputForm(x)$Lisp) => strsym s
concat [strsym a for a in destruct s]
parse(s:String):% ==
ncParseFromString(s)$Lisp
declare signature ==
declare(name := new()$Symbol, signature)$Lisp
name
compile(name, types) ==
symbol car cdr car
selectLocalMms(mkProperOp name, convert(name)@%,
types, nil$List(%))$Lisp
mkProperOp name ==
op := mkAtree(nme := convert(name)@%)$Lisp
transferPropsToNode(nme, op)$Lisp
convert op
binary(op, args) ==
(n := #args) < 2 => error "Need at least 2 arguments"
n = 2 => convert([op, first args, last args]$List(%))
convert([op, first args, binary(op, rest args)]$List(%))
tuplify l ==
empty? rest l => convert first l
conv
concat(convert("Tuple"::Symbol), [convert x for x in l]$List(%))
function(f, l, name) ==
nn := convert(new(1 + #l, convert(nil()$List(%)))$List(%))@%
conv([convert("DEF"::Symbol), conv(cons(convert(name)@%,
[convert(x)@% for x in l])), nn, nn, f]$List(%))
s1 + s2 ==
s1 = 0 => s2
s2 = 0 => s1
conv [convert("+"::Symbol), s1, s2]$List(%)
s1 * s2 ==
s1 = 0 or s2 = 0 => 0
s1 = 1 => s2
s2 = 1 => s1
conv [convert("*"::Symbol), s1, s2]$List(%)
s1:% ** n:Integer ==
s1 = 0 and n > 0 => 0
s1 = 1 or zero? n => 1
(n = 1) => s1
conv [convert("**"::Symbol), s1, convert n]$List(%)
s1:% ** n:NonNegativeInteger == s1 ** (n::Integer)
s1 / s2 ==
s2 = 1 => s1
conv [convert("/"::Symbol), s1, s2]$List(%)
|