This file is indexed.

/usr/share/axiom-20170501/src/algebra/INFORM.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
)abbrev domain INFORM InputForm
++ Author: Manuel Bronstein
++ Date Last Updated: 19 April 1991
++ Description:
++ Domain of parsed forms which can be passed to the interpreter.
++ This is also the interface between algebra code and facilities
++ in the interpreter.

--)boot $noSubsumption := true

InputForm() : SIG == CODE where

  SIG ==> Join(
            SExpressionCategory(String,Symbol,Integer,DoubleFloat,OutputForm),
              ConvertibleTo SExpression) with

    interpret: % -> Any
      ++ interpret(f) passes f to the interpreter.

    convert : SExpression -> %
      ++ convert(s) makes s into an input form.

    binary : (%, List %) -> %
      ++ \spad{binary(op, [a1,...,an])} returns the input form
      ++ corresponding to  \spad{a1 op a2 op ... op an}.
      ++
      ++X a:=[1,2,3]::List(InputForm)
      ++X binary(_+::InputForm,a)

    function : (%, List Symbol, Symbol) -> %
      ++ \spad{function(code, [x1,...,xn], f)} returns the input form
      ++ corresponding to \spad{f(x1,...,xn) == code}.

    lambda : (%, List Symbol) -> %
      ++ \spad{lambda(code, [x1,...,xn])} returns the input form
      ++ corresponding to \spad{(x1,...,xn) +-> code} if \spad{n > 1},
      ++ or to \spad{x1 +-> code} if \spad{n = 1}.

    "+" : (%, %) -> %
      ++ \spad{a + b} returns the input form corresponding to \spad{a + b}.

    "*" : (%, %) -> %
      ++ \spad{a * b} returns the input form corresponding to \spad{a * b}.

    "/" : (%, %) -> %
      ++ \spad{a / b} returns the input form corresponding to \spad{a / b}.

    "**" : (%, NonNegativeInteger) -> %
      ++ \spad{a ** b} returns the input form corresponding to \spad{a ** b}.

    "**" : (%, Integer) -> %
      ++ \spad{a ** b} returns the input form corresponding to \spad{a ** b}.

    0 : constant -> %
      ++ \spad{0} returns the input form corresponding to 0.

    1 : constant -> %
      ++ \spad{1} returns the input form corresponding to 1.

    flatten : % -> %
      ++ flatten(s) returns an input form corresponding to s with
      ++ all the nested operations flattened to triples using new
      ++ local variables.
      ++ If s is a piece of code, this speeds up
      ++ the compilation tremendously later on.

    unparse : % -> String
      ++ unparse(f) returns a string s such that the parser
      ++ would transform s to f.
      ++ Error: if f is not the parsed form of a string.

    parse : String -> %
      ++ parse(s) is the inverse of unparse. It parses a string to InputForm.

    declare : List % -> Symbol
      ++ declare(t) returns a name f such that f has been
      ++ declared to the interpreter to be of type t, but has
      ++ not been assigned a value yet.
      ++ Note: t should be created as \spad{devaluate(T)$Lisp} where T is the
      ++ actual type of f (this hack is required for the case where
      ++ T is a mapping type).

    compile : (Symbol, List %) -> Symbol
      ++ \spad{compile(f, [t1,...,tn])} forces the interpreter to compile
      ++ the function f with signature \spad{(t1,...,tn) -> ?}.
      ++ returns the symbol f if successful.
      ++ Error: if f was not defined beforehand in the interpreter,
      ++ or if the ti's are not valid types, or if the compiler fails.

  CODE ==> SExpression add

    Rep := SExpression

    mkProperOp: Symbol -> %
    strsym    : % -> String
    tuplify   : List Symbol -> %
    flatten0  : (%, Symbol, NonNegativeInteger) ->
                                             Record(lst: List %, symb:%)

    0                        == convert(0::Integer)

    1                        == convert(1::Integer)

    convert(x:%):SExpression == x pretend SExpression

    convert(x:SExpression):% == x

    conv(ll : List %): % ==
      convert(ll pretend List SExpression)$SExpression pretend %

    lambda(f,l) == conv([convert("+->"::Symbol),tuplify l,f]$List(%))

    interpret x ==
      v := interpret(x)$Lisp
      mkObjFn(unwrap(objValFn(v)$Lisp)$Lisp, objModeFn(v)$Lisp)$Lisp

    convert(x:DoubleFloat):% ==
      zero? x => 0
      (x = 1) => 1
      convert(x)$Rep

    flatten s ==
      -- will not compile if I use 'or'
      atom? s => s
      every?(atom?,destruct s)$List(%) => s
      sy := new()$Symbol
      n:NonNegativeInteger := 0
      l2 := [flatten0(x, sy, n := n + 1) for x in rest(l := destruct s)]
      conv(concat(convert("SEQ"::Symbol)@%,
        concat(concat [u.lst for u in l2], conv(
           [convert("exit"::Symbol)@%, 1$%, conv(concat(first l,
               [u.symb for u in l2]))@%]$List(%))@%)))@%

    flatten0(s, sy, n) ==
      atom? s => [nil(), s]
      a := convert(concat(string sy, convert(n)@String)::Symbol)@%
      l2 := [flatten0(x, sy, n := n+1) for x in rest(l := destruct s)]
      [concat(concat [u.lst for u in l2], conv([convert(
        "LET"::Symbol)@%, a, conv(concat(first l,
             [u.symb for u in l2]))@%]$List(%))@%), a]

    strsym s ==
      string? s => string s
      symbol? s => string symbol s
      error "strsym: form is neither a string or symbol"

    -- given a function this will attempt to recreate the input string
    unparse x ==
      atom?(s:% := unparseInputForm(x)$Lisp) => strsym s
      concat [strsym a for a in destruct s]

    parse(s:String):% ==
      ncParseFromString(s)$Lisp

    declare signature ==
      declare(name := new()$Symbol, signature)$Lisp
      name

    compile(name, types) ==
      symbol car cdr car
        selectLocalMms(mkProperOp name, convert(name)@%,
          types, nil$List(%))$Lisp

    mkProperOp name ==
      op := mkAtree(nme := convert(name)@%)$Lisp
      transferPropsToNode(nme, op)$Lisp
      convert op

    binary(op, args) ==
      (n := #args) < 2 => error "Need at least 2 arguments"
      n = 2 => convert([op, first args, last args]$List(%))
      convert([op, first args, binary(op, rest args)]$List(%))

    tuplify l ==
      empty? rest l => convert first l
      conv
        concat(convert("Tuple"::Symbol), [convert x for x in l]$List(%))

    function(f, l, name) ==
      nn := convert(new(1 + #l, convert(nil()$List(%)))$List(%))@%
      conv([convert("DEF"::Symbol), conv(cons(convert(name)@%,
                        [convert(x)@% for x in l])), nn, nn, f]$List(%))

    s1 + s2 ==
      s1 = 0 => s2
      s2 = 0 => s1
      conv [convert("+"::Symbol), s1, s2]$List(%)

    s1 * s2 ==
      s1 = 0 or s2 = 0 => 0
      s1 = 1 => s2
      s2 = 1 => s1
      conv [convert("*"::Symbol), s1, s2]$List(%)

    s1:% ** n:Integer ==
      s1 = 0 and n > 0 => 0
      s1 = 1 or zero? n => 1
      (n = 1) => s1
      conv [convert("**"::Symbol), s1, convert n]$List(%)

    s1:% ** n:NonNegativeInteger == s1 ** (n::Integer)

    s1 / s2 ==
      s2 = 1 => s1
      conv [convert("/"::Symbol), s1, s2]$List(%)