This file is indexed.

/usr/share/axiom-20170501/src/algebra/INMODGCD.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
)abbrev package INMODGCD InnerModularGcd
++ Author: J.H. Davenport and P. Gianni
++ Date Created: July 1990
++ Date Last Updated: November 1991
++ Description:
++ This file contains the functions for modular gcd algorithm
++ for univariate polynomials with coefficients in a
++ non-trivial euclidean domain (not a field).
++ The package parametrised by the coefficient domain,
++ the polynomial domain, a prime, and a function for choosing the next prime

InnerModularGcd(R,BP,pMod,nextMod) : SIG == CODE where
  R : EuclideanDomain
  BP : UnivariatePolynomialCategory(R)
  pMod : R
  NNI  ==> NonNegativeInteger
  nextMod : (R,NNI) -> R

  Z    ==> Integer

  SIG ==> with

     modularGcdPrimitive : List BP -> BP
       ++ modularGcdPrimitive(f1,f2) computes the gcd of the two polynomials
       ++ f1 and f2 by modular methods.

     modularGcd : List BP -> BP
       ++ modularGcd(listf) computes the gcd of the list of polynomials
       ++ listf  by modular methods.

     reduction : (BP,R) -> BP
       ++ reduction(f,p) reduces the coefficients of the polynomial f
       ++ modulo the prime p.

  CODE ==> add

                    -- local functions --
    height    :         BP                ->   NNI
    mbound    :       (BP,BP)             ->   NNI
    modGcdPrimitive    :   (BP,BP)        ->   BP
    test         :     (BP,BP,BP)         ->   Boolean
    merge        :        (R,R)           ->   Union(R,"failed")
    modInverse   :      (R,R)             ->   R
    exactquo     :       (BP,BP,R)        ->   Union(BP,"failed")
    constNotZero :           BP           ->   Boolean
    constcase    : (List NNI ,List BP )   ->   BP 
    lincase      : (List NNI ,List BP )   ->   BP 


    if R has IntegerNumberSystem then
        reduction(u:BP,p:R):BP ==
            p = 0 => u
            map((r1:R):R +-> symmetricRemainder(r1,p),u)
      else
        reduction(u:BP,p:R):BP ==
            p = 0 => u
            map((r1:R):R +-> r1 rem p,u)

    FP:=EuclideanModularRing(R,BP,R,reduction,merge,exactquo)
    zeroChar : Boolean := R has CharacteristicZero

                 --  exported functions --

    -- modular Gcd for a list of primitive polynomials
    modularGcdPrimitive(listf : List BP) :BP ==
      empty? listf => 0$BP
      g := first listf
      for f in rest listf | ^zero? f  while degree g > 0 repeat
        g:=modGcdPrimitive(g,f)
      g

    -- gcd for univariate polynomials
    modularGcd(listf : List BP): BP  ==
      listf:=remove!(0$BP,listf)
      empty? listf => 0$BP
      # listf = 1 => first listf 
      minpol:=1$BP
      -- extract a monomial gcd
      mdeg:= "min"/[minimumDegree f for f in listf]
      if mdeg>0 then
        minpol1:= monomial(1,mdeg)
        listf:= [(f exquo minpol1)::BP for f in listf]
        minpol:=minpol*minpol1
      listdeg:=[degree f for f in listf ]
    -- make the polynomials primitive
      listCont := [content f for f in listf]
      contgcd:= gcd listCont
      -- make the polynomials primitive
      listf :=[(f exquo cf)::BP for f in listf for cf in listCont]
      minpol:=contgcd*minpol
      ans:BP :=  
         --one polynomial is constant
         member?(1,listf) => 1
         --one polynomial is linear
         member?(1,listdeg) => lincase(listdeg,listf)
         modularGcdPrimitive listf
      minpol*ans
 
                  --  local functions --

    --one polynomial is linear, remark that they are primitive
    lincase(listdeg:List NNI ,listf:List BP ): BP  ==
      n:= position(1,listdeg)
      g:=listf.n
      for f in listf repeat
        if (f1:=f exquo g) case "failed" then return 1$BP
      g

    -- test if d is the gcd
    test(f:BP,g:BP,d:BP):Boolean ==
      d0:=coefficient(d,0)
      coefficient(f,0) exquo d0 case "failed" => false
      coefficient(g,0) exquo d0 case "failed" => false
      f exquo d case "failed" => false
      g exquo d case "failed" => false
      true

    -- gcd and cofactors for PRIMITIVE univariate polynomials
    -- also assumes that constant terms are non zero
    modGcdPrimitive(f:BP,g:BP): BP ==
      df:=degree f
      dg:=degree g
      dp:FP
      lcf:=leadingCoefficient f
      lcg:=leadingCoefficient g
      testdeg:NNI
      lcd:R:=gcd(lcf,lcg)
      prime:=pMod
      bound:=mbound(f,g)
      while zero? (lcd rem prime) repeat
        prime := nextMod(prime,bound)
      soFar:=gcd(reduce(f,prime),reduce(g,prime))::BP
      testdeg:=degree soFar
      zero? testdeg => return 1$BP
      ldp:FP:=
        ((lcdp:=leadingCoefficient(soFar::BP)) = 1) =>
                                        reduce(lcd::BP,prime)
        reduce((modInverse(lcdp,prime)*lcd)::BP,prime)
      soFar:=reduce(ldp::BP *soFar,prime)::BP
      soFarModulus:=prime
      -- choose the prime
      while true repeat
        prime := nextMod(prime,bound)
        lcd rem prime =0 => "next prime"
        fp:=reduce(f,prime)
        gp:=reduce(g,prime)
        dp:=gcd(fp,gp)
        dgp :=euclideanSize dp
        if dgp =0 then return 1$BP
        if dgp=dg and ^(f exquo g case "failed") then return g
        if dgp=df and ^(g exquo f case "failed") then return f
        dgp > testdeg => "next prime"
        ldp:FP:=
          ((lcdp:=leadingCoefficient(dp::BP)) = 1) =>
                                        reduce(lcd::BP,prime)
          reduce((modInverse(lcdp,prime)*lcd)::BP,prime)
        dp:=ldp *dp
        dgp=testdeg  =>
           correction:=reduce(dp::BP-soFar,prime)::BP
           zero? correction =>
              ans:=reduce(lcd::BP*soFar,soFarModulus)::BP
              cont:=content ans
              ans:=(ans exquo cont)::BP
              test(f,g,ans) => return ans
              soFarModulus:=soFarModulus*prime
           correctionFactor:=modInverse(soFarModulus rem prime,prime)
                             -- the initial rem is just for efficiency
           soFar:=soFar+soFarModulus*(correctionFactor*correction)
           soFarModulus:=soFarModulus*prime
           soFar:=reduce(soFar,soFarModulus)::BP
        dgp<testdeg =>
          soFarModulus:=prime
          soFar:=dp::BP
          testdeg:=dgp
        if ^zeroChar and euclideanSize(prime)>1 then
           result:=dp::BP
           test(f,g,result) => return result
        -- this is based on the assumption that the caller of this package,
        -- in non-zero characteristic, will use primes of the form
        -- x-alpha as long as possible, but, if these are exhausted,
        -- will switch to a prime of degree larger than the answer
        -- so the result can be used directly.

    merge(p:R,q:R):Union(R,"failed") ==
         p = q => p
         p = 0 => q
         q = 0 => p
         "failed"

    modInverse(c:R,p:R):R ==
        (extendedEuclidean(c,p,1)::Record(coef1:R,coef2:R)).coef1

    exactquo(u:BP,v:BP,p:R):Union(BP,"failed") ==
        invlcv:=modInverse(leadingCoefficient v,p)
        r:=monicDivide(u,reduction(invlcv*v,p))
        reduction(r.remainder,p) ^=0 => "failed"
        reduction(invlcv*r.quotient,p)


    -- compute the height of a polynomial --
    height(f:BP):NNI ==
      degf:=degree f
      "max"/[euclideanSize cc for cc in coefficients f]

    -- compute the bound
    mbound(f:BP,g:BP):NNI ==
      hf:=height f
      hg:=height g
      2*min(hf,hg)