/usr/share/axiom-20170501/src/algebra/INNMFACT.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | )abbrev package INNMFACT InnerMultFact
++ Author: P. Gianni
++ Date Created: 1983
++ Date Last Updated: Sept. 1990
++ Description:
++ This is an inner package for factoring multivariate polynomials
++ over various coefficient domains in characteristic 0.
++ The univariate factor operation is passed as a parameter.
++ Multivariate hensel lifting is used to lift the univariate
++ factorization
-- Both exposed functions call mFactor. This deals with issues such as
-- monomial factors, contents, square-freeness etc., then calls intfact.
-- This uses intChoose to find a "good" evaluation and factorise the
-- corresponding univariate, and then uses MultivariateLifting to find
-- the multivariate factors.
InnerMultFact(OV,E,R,P) : SIG == CODE where
R : Join(EuclideanDomain, CharacteristicZero)
-- with factor on R[x]
OV : OrderedSet
E : OrderedAbelianMonoidSup
P : PolynomialCategory(R,E,OV)
BP ==> SparseUnivariatePolynomial R
UFactor ==> (BP -> Factored BP)
Z ==> Integer
MParFact ==> Record(irr:P,pow:Z)
USP ==> SparseUnivariatePolynomial P
SUParFact ==> Record(irr:USP,pow:Z)
SUPFinalFact ==> Record(contp:R,factors:List SUParFact)
MFinalFact ==> Record(contp:R,factors:List MParFact)
-- contp = content,
-- factors = List of irreducible factors with exponent
L ==> List
SIG ==> with
factor : (P,UFactor) -> Factored P
++ factor(p,ufact) factors the multivariate polynomial p
++ by specializing variables and calling the univariate
++ factorizer ufact.
factor : (USP,UFactor) -> Factored USP
++ factor(p,ufact) factors the multivariate polynomial p
++ by specializing variables and calling the univariate
++ factorizer ufact. p is represented as a univariate
++ polynomial with multivariate coefficients.
CODE ==> add
NNI ==> NonNegativeInteger
LeadFact ==> Record(polfac:L P,correct:R,corrfact:L BP)
ContPrim ==> Record(cont:P,prim:P)
ParFact ==> Record(irr:BP,pow:Z)
FinalFact ==> Record(contp:R,factors:L ParFact)
NewOrd ==> Record(npol:USP,nvar:L OV,newdeg:L NNI)
pmod:R := (prevPrime(2**26)$IntegerPrimesPackage(Integer))::R
import GenExEuclid(R,BP)
import MultivariateLifting(E,OV,R,P)
import FactoringUtilities(E,OV,R,P)
import LeadingCoefDetermination(OV,E,R,P)
Valuf ==> Record(inval:L L R,unvfact:L BP,lu:R,complead:L R)
UPCF2 ==> UnivariatePolynomialCategoryFunctions2
---- Local Functions ----
mFactor : (P,UFactor) -> MFinalFact
supFactor : (USP,UFactor) -> SUPFinalFact
mfconst : (USP,L OV,L NNI,UFactor) -> L USP
mfpol : (USP,L OV,L NNI,UFactor) -> L USP
monicMfpol: (USP,L OV,L NNI,UFactor) -> L USP
varChoose : (P,L OV,L NNI) -> NewOrd
simplify : (P,L OV,L NNI,UFactor) -> MFinalFact
intChoose : (USP,L OV,R,L P,L L R,UFactor) -> Union(Valuf,"failed")
intfact : (USP,L OV,L NNI,MFinalFact,L L R,UFactor) -> L USP
pretest : (P,NNI,L OV,L R) -> FinalFact
checkzero : (USP,BP) -> Boolean
localNorm : L BP -> Z
convertPUP(lfg:MFinalFact): SUPFinalFact ==
[lfg.contp,[[lff.irr ::USP,lff.pow]$SUParFact
for lff in lfg.factors]]$SUPFinalFact
-- intermediate routine if an SUP was passed in.
supFactor(um:USP,ufactor:UFactor) : SUPFinalFact ==
ground?(um) => convertPUP(mFactor(ground um,ufactor))
lvar:L OV:= "setUnion"/[variables cf for cf in coefficients um]
empty? lvar => -- the polynomial is univariate
umv:= map(ground,um)$UPCF2(P,USP,R,BP)
lfact:=ufactor umv
[retract unit lfact,[[map(coerce,ff.factor)$UPCF2(R,BP,P,USP),
ff.exponent] for ff in factors lfact]]$SUPFinalFact
lcont:P
lf:L USP
flead : SUPFinalFact:=[0,empty()]$SUPFinalFact
factorlist:L SUParFact :=empty()
mdeg :=minimumDegree um ---- is the Mindeg > 0? ----
if mdeg>0 then
f1:USP:=monomial(1,mdeg)
um:=(um exquo f1)::USP
factorlist:=cons([monomial(1,1),mdeg],factorlist)
if degree um=0 then return
lfg:=convertPUP mFactor(ground um, ufactor)
[lfg.contp,append(factorlist,lfg.factors)]
uum:=unitNormal um
um :=uum.canonical
sqfacs := squareFree(um)$MultivariateSquareFree(E,OV,R,P)
lcont := ground(uum.unit * unit sqfacs)
---- Factorize the content ----
flead:=convertPUP mFactor(lcont,ufactor)
factorlist:=append(flead.factors,factorlist)
---- Make the polynomial square-free ----
sqqfact:=factors sqfacs
--- Factorize the primitive square-free terms ---
for fact in sqqfact repeat
ffactor:USP:=fact.factor
ffexp:=fact.exponent
zero? degree ffactor =>
lfg:=mFactor(ground ffactor,ufactor)
lcont:=lfg.contp * lcont
factorlist := append(factorlist,
[[lff.irr ::USP,lff.pow * ffexp]$SUParFact
for lff in lfg.factors])
coefs := coefficients ffactor
ldeg:= ["max"/[degree(fc,xx) for fc in coefs] for xx in lvar]
lf :=
ground?(leadingCoefficient ffactor) =>
mfconst(ffactor,lvar,ldeg,ufactor)
mfpol(ffactor,lvar,ldeg,ufactor)
auxfl:=[[lfp,ffexp]$SUParFact for lfp in lf]
factorlist:=append(factorlist,auxfl)
lcfacs := */[leadingCoefficient leadingCoefficient(f.irr)**((f.pow)::NNI)
for f in factorlist]
[(leadingCoefficient leadingCoefficient(um) exquo lcfacs)::R,
factorlist]$SUPFinalFact
factor(um:USP,ufactor:UFactor):Factored USP ==
flist := supFactor(um,ufactor)
(flist.contp):: P :: USP *
(*/[primeFactor(u.irr,u.pow) for u in flist.factors])
checkzero(u:USP,um:BP) : Boolean ==
u=0 => um =0
um = 0 => false
degree u = degree um => checkzero(reductum u, reductum um)
false
--- Choose the variable of less degree ---
varChoose(m:P,lvar:L OV,ldeg:L NNI) : NewOrd ==
k:="min"/[d for d in ldeg]
k=degree(m,first lvar) =>
[univariate(m,first lvar),lvar,ldeg]$NewOrd
i:=position(k,ldeg)
x:OV:=lvar.i
ldeg:=cons(k,delete(ldeg,i))
lvar:=cons(x,delete(lvar,i))
[univariate(m,x),lvar,ldeg]$NewOrd
localNorm(lum: L BP): Z ==
R is AlgebraicNumber =>
"max"/[numberOfMonomials ff for ff in lum]
"max"/[+/[euclideanSize cc for i in 0..degree ff|
(cc:= coefficient(ff,i))^=0] for ff in lum]
--- Choose the integer to reduce to univariate case ---
intChoose(um:USP,lvar:L OV,clc:R,plist:L P,ltry:L L R,
ufactor:UFactor) : Union(Valuf,"failed") ==
-- declarations
degum:NNI := degree um
nvar1:=#lvar
range:NNI:=5
unifact:L BP
ctf1 : R := 1
testp:Boolean := -- polynomial leading coefficient
empty? plist => false
true
leadcomp,leadcomp1 : L R
leadcomp:=leadcomp1:=empty()
nfatt:NNI := degum+1
lffc:R:=1
lffc1:=lffc
newunifact : L BP:=empty()
leadtest:=true --- the lc test with polCase has to be performed
int:L R:=empty()
-- New sets of integers are chosen to reduce the multivariate problem to
-- a univariate one, until we find twice the
-- same (and minimal) number of "univariate" factors:
-- the set smaller in modulo is chosen.
-- Note that there is no guarantee that this is the truth:
-- merely the closest approximation we have found!
while true repeat
testp and #ltry>10 => return "failed"
lval := [ ran(range) for i in 1..nvar1]
member?(lval,ltry) => range:=2*range
ltry := cons(lval,ltry)
leadcomp1:=[retract eval(pol,lvar,lval) for pol in plist]
testp and or/[unit? epl for epl in leadcomp1] => range:=2*range
newm:BP:=completeEval(um,lvar,lval)
degum ^= degree newm or minimumDegree newm ^=0 => range:=2*range
lffc1:=content newm
newm:=(newm exquo lffc1)::BP
testp and leadtest and ^ polCase(lffc1*clc,#plist,leadcomp1)
=> range:=2*range
degree(gcd [newm,differentiate(newm)])^=0 => range:=2*range
luniv:=ufactor(newm)
lunivf:= factors luniv
lffc1:R:=retract(unit luniv)@R * lffc1
nf:= #lunivf
nf=0 or nf>nfatt => "next values" --- pretest failed ---
--- the univariate polynomial is irreducible ---
if nf=1 then leave (unifact:=[newm])
-- the new integer give the same number of factors
nfatt = nf =>
-- if this is the first univariate factorization with polCase=true
-- or if the last factorization has smaller norm and satisfies
-- polCase
if leadtest or
((localNorm unifact > localNorm [ff.factor for ff in lunivf])
and (^testp or polCase(lffc1*clc,#plist,leadcomp1))) then
unifact:=[uf.factor for uf in lunivf]
int:=lval
lffc:=lffc1
if testp then leadcomp:=leadcomp1
leave "foundit"
-- the first univariate factorization, inizialize
nfatt > degum =>
unifact:=[uf.factor for uf in lunivf]
lffc:=lffc1
if testp then leadcomp:=leadcomp1
int:=lval
leadtest := false
nfatt := nf
nfatt>nf => -- for the previous values there were more factors
if testp then leadtest:=^polCase(lffc*clc,#plist,leadcomp)
else leadtest:= false
-- if polCase=true we can consider the univariate decomposition
if ^leadtest then
unifact:=[uf.factor for uf in lunivf]
lffc:=lffc1
if testp then leadcomp:=leadcomp1
int:=lval
nfatt := nf
[cons(int,ltry),unifact,lffc,leadcomp]$Valuf
---- The polynomial has mindeg>0 ----
simplify(m:P,lvar:L OV,lmdeg:L NNI,ufactor:UFactor):MFinalFact ==
factorlist:L MParFact:=[]
pol1:P:= 1$P
for x in lvar repeat
i := lmdeg.(position(x,lvar))
i=0 => "next value"
pol1:=pol1*monomial(1$P,x,i)
factorlist:=cons([x::P,i]$MParFact,factorlist)
m := (m exquo pol1)::P
ground? m => [retract m,factorlist]$MFinalFact
flead:=mFactor(m,ufactor)
flead.factors:=append(factorlist,flead.factors)
flead
-- This is the key internal function
-- We now know that the polynomial is square-free etc.,
-- We use intChoose to find a set of integer values to reduce the
-- problem to univariate (and for efficiency, intChoose returns
-- the univariate factors).
-- In the case of a polynomial leading coefficient, we check that this
-- is consistent with leading coefficient determination (else try again)
-- We then lift the univariate factors to multivariate factors, and
-- return the result
intfact(um:USP,lvar: L OV,ldeg:L NNI,tleadpol:MFinalFact,
ltry:L L R,ufactor:UFactor) : L USP ==
polcase:Boolean:=(not empty? tleadpol.factors)
vfchoo:Valuf:=
polcase =>
leadpol:L P:=[ff.irr for ff in tleadpol.factors]
check:=intChoose(um,lvar,tleadpol.contp,leadpol,ltry,ufactor)
check case "failed" => return monicMfpol(um,lvar,ldeg,ufactor)
check::Valuf
intChoose(um,lvar,1,empty(),empty(),ufactor)::Valuf
unifact:List BP := vfchoo.unvfact
nfact:NNI := #unifact
nfact=1 => [um]
ltry:L L R:= vfchoo.inval
lval:L R:=first ltry
dd:= vfchoo.lu
leadval:L R:=empty()
lpol:List P:=empty()
if polcase then
leadval := vfchoo.complead
distf := distFact(vfchoo.lu,unifact,tleadpol,leadval,lvar,lval)
distf case "failed" =>
return intfact(um,lvar,ldeg,tleadpol,ltry,ufactor)
dist := distf :: LeadFact
-- check the factorization of leading coefficient
lpol:= dist.polfac
dd := dist.correct
unifact:=dist.corrfact
if dd^=1 then
unifact := [dd * unif for unif in unifact]
umd := unitNormal(dd).unit * ((dd**(nfact-1)::NNI)::P)*um
else umd := um
(ffin:=lifting(umd,lvar,unifact,lval,lpol,ldeg,pmod))
case "failed" => intfact(um,lvar,ldeg,tleadpol,ltry,ufactor)
factfin: L USP:=ffin :: L USP
if dd^=1 then
factfin:=[primitivePart ff for ff in factfin]
factfin
---- m square-free,primitive,lc constant ----
mfconst(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP ==
factfin:L USP:=empty()
empty? lvar =>
lum:=factors ufactor(map(ground,um)$UPCF2(P,USP,R,BP))
[map(coerce,uf.factor)$UPCF2(R,BP,P,USP) for uf in lum]
intfact(um,lvar,ldeg,[0,empty()]$MFinalFact,empty(),ufactor)
monicize(um:USP,c:P):USP ==
n:=degree(um)
ans:USP := monomial(1,n)
n:=(n-1)::NonNegativeInteger
prod:P:=1
while (um:=reductum(um)) ^= 0 repeat
i := degree um
lc := leadingCoefficient um
prod := prod * c ** (n-(n:=i))::NonNegativeInteger
ans := ans + monomial(prod*lc, i)
ans
unmonicize(m:USP,c:P):USP == primitivePart m(monomial(c,1))
--- m is square-free,primitive,lc is a polynomial ---
monicMfpol(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP ==
l := leadingCoefficient um
monpol := monicize(um,l)
nldeg := degree(monpol,lvar)
map((z1:USP):USP +-> unmonicize(z1,l),
mfconst(monpol,lvar,nldeg,ufactor))
mfpol(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP ==
R has Field =>
monicMfpol(um,lvar,ldeg,ufactor)
tleadpol:=mFactor(leadingCoefficient um,ufactor)
intfact(um,lvar,ldeg,tleadpol,[],ufactor)
mFactor(m:P,ufactor:UFactor) : MFinalFact ==
ground?(m) => [retract(m),empty()]$MFinalFact
lvar:L OV:= variables m
lcont:P
lf:L USP
flead : MFinalFact:=[0,empty()]$MFinalFact
factorlist:L MParFact :=empty()
lmdeg :=minimumDegree(m,lvar) ---- is the Mindeg > 0? ----
or/[n>0 for n in lmdeg] => simplify(m,lvar,lmdeg,ufactor)
sqfacs := squareFree m
lcont := unit sqfacs
---- Factorize the content ----
if ground? lcont then flead.contp:=retract lcont
else flead:=mFactor(lcont,ufactor)
factorlist:=flead.factors
---- Make the polynomial square-free ----
sqqfact:=factors sqfacs
--- Factorize the primitive square-free terms ---
for fact in sqqfact repeat
ffactor:P:=fact.factor
ffexp := fact.exponent
lvar := variables ffactor
x:OV :=lvar.first
ldeg:=degree(ffactor,lvar)
--- Is the polynomial linear in one of the variables ? ---
member?(1,ldeg) =>
x:OV:=lvar.position(1,ldeg)
lcont:= gcd coefficients(univariate(ffactor,x))
ffactor:=(ffactor exquo lcont)::P
factorlist:=cons([ffactor,ffexp]$MParFact,factorlist)
for lcterm in mFactor(lcont,ufactor).factors repeat
factorlist:=cons([lcterm.irr,lcterm.pow * ffexp], factorlist)
varch:=varChoose(ffactor,lvar,ldeg)
um:=varch.npol
x:=lvar.first
ldeg:=ldeg.rest
lvar := lvar.rest
if varch.nvar.first ^= x then
lvar:= varch.nvar
x := lvar.first
lvar := lvar.rest
pc:= gcd coefficients um
if pc^=1 then
um:=(um exquo pc)::USP
ffactor:=multivariate(um,x)
for lcterm in mFactor(pc,ufactor).factors repeat
factorlist:=cons([lcterm.irr,lcterm.pow*ffexp],factorlist)
ldeg:=degree(ffactor,lvar)
um := unitCanonical um
if ground?(leadingCoefficient um) then
lf:= mfconst(um,lvar,ldeg,ufactor)
else lf:=mfpol(um,lvar,ldeg,ufactor)
auxfl:=[[unitCanonical multivariate(lfp,x),ffexp]$MParFact_
for lfp in lf]
factorlist:=append(factorlist,auxfl)
lcfacs:=*/[leadingCoefficient(f.irr)**((f.pow)::NNI) for f in factorlist]
[(leadingCoefficient(m) exquo lcfacs):: R,factorlist]$MFinalFact
factor(m:P,ufactor:UFactor):Factored P ==
flist := mFactor(m,ufactor)
(flist.contp):: P *
(*/[primeFactor(u.irr,u.pow) for u in flist.factors])
|