This file is indexed.

/usr/share/axiom-20170501/src/algebra/INPRODFF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
)abbrev package INPRODFF InfiniteProductFiniteField
++ Author: Clifton J. Williamson
++ Date Created: 22 February 1990
++ Date Last Updated: 23 February 1990
++ Description: 
++ This package computes infinite products of univariate Taylor series
++ over an arbitrary finite field.

InfiniteProductFiniteField(K,UP,Coef,UTS) : SIG == CODE where
  K : Join(Field,Finite,ConvertibleTo Integer)
  UP : UnivariatePolynomialCategory K
  Coef : MonogenicAlgebra(K,UP)
  UTS : UnivariateTaylorSeriesCategory Coef

  I   ==> Integer
  RN  ==> Fraction Integer
  SAE ==> SimpleAlgebraicExtension
  ST  ==> Stream
  STF ==> StreamTranscendentalFunctions
  STT ==> StreamTaylorSeriesOperations
  ST2 ==> StreamFunctions2
  SUP ==> SparseUnivariatePolynomial
 
  SIG ==> with
 
    infiniteProduct : UTS -> UTS
      ++ infiniteProduct(f(x)) computes \spad{product(n=1,2,3...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.

    evenInfiniteProduct : UTS -> UTS
      ++ evenInfiniteProduct(f(x)) computes \spad{product(n=2,4,6...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.

    oddInfiniteProduct : UTS -> UTS
      ++ oddInfiniteProduct(f(x)) computes \spad{product(n=1,3,5...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.

    generalInfiniteProduct : (UTS,I,I) -> UTS
      ++ generalInfiniteProduct(f(x),a,d) computes
      ++ \spad{product(n=a,a+d,a+2*d,...,f(x**n))}.
      ++ The series \spad{f(x)} should have constant coefficient 1.
 
  CODE ==> add
 
    liftPoly: UP -> SUP RN
    liftPoly poly ==
      -- lift coefficients of 'poly' to integers
      ans : SUP RN := 0
      while not zero? poly repeat
        coef := convert(leadingCoefficient poly)@I :: RN
        ans := ans + monomial(coef,degree poly)
        poly := reductum poly
      ans
 
    reducePoly: SUP RN -> UP
    reducePoly poly ==
      -- reduce coefficients of 'poly' to elements of K
      ans : UP := 0
      while not zero? poly repeat
        coef := numer(leadingCoefficient(poly)) :: K
        ans := ans + monomial(coef,degree poly)
        poly := reductum poly
      ans
 
    POLY := liftPoly definingPolynomial()$Coef
    ALG  := SAE(RN,SUP RN,POLY)
 
    infiniteProduct x ==
      stUP := map(lift,coefficients x)$ST2(Coef,UP)
      stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN)
      stALG := map(reduce,stSUP)$ST2(SUP RN,ALG)
      stALG := exp(lambert(log(stALG)$STF(ALG))$STT(ALG))$STF(ALG)
      stSUP := map(lift,stALG)$ST2(ALG,SUP RN)
      stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP)
      series map(reduce,stUP)$ST2(UP,Coef)
 
    evenInfiniteProduct x ==
      stUP := map(lift,coefficients x)$ST2(Coef,UP)
      stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN)
      stALG := map(reduce,stSUP)$ST2(SUP RN,ALG)
      stALG := exp(evenlambert(log(stALG)$STF(ALG))$STT(ALG))$STF(ALG)
      stSUP := map(lift,stALG)$ST2(ALG,SUP RN)
      stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP)
      series map(reduce,stUP)$ST2(UP,Coef)
 
    oddInfiniteProduct x ==
      stUP := map(lift,coefficients x)$ST2(Coef,UP)
      stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN)
      stALG := map(reduce,stSUP)$ST2(SUP RN,ALG)
      stALG := exp(oddlambert(log(stALG)$STF(ALG))$STT(ALG))$STF(ALG)
      stSUP := map(lift,stALG)$ST2(ALG,SUP RN)
      stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP)
      series map(reduce,stUP)$ST2(UP,Coef)
 
    generalInfiniteProduct(x,a,d) ==
      stUP := map(lift,coefficients x)$ST2(Coef,UP)
      stSUP := map(liftPoly,stUP)$ST2(UP,SUP RN)
      stALG := map(reduce,stSUP)$ST2(SUP RN,ALG)
      stALG := generalLambert(log(stALG)$STF(ALG),a,d)$STT(ALG)
      stALG := exp(stALG)$STF(ALG)
      stSUP := map(lift,stALG)$ST2(ALG,SUP RN)
      stUP := map(reducePoly,stSUP)$ST2(SUP RN,UP)
      series map(reduce,stUP)$ST2(UP,Coef)