/usr/share/axiom-20170501/src/algebra/INS.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | )abbrev category INS IntegerNumberSystem
++ Author: Stephen M. Watt
++ Date Created: January 1988
++ Description:
++ An \spad{IntegerNumberSystem} is a model for the integers.
IntegerNumberSystem() : Category == SIG where
UFD ==> UniqueFactorizationDomain
ED ==> EuclideanDomain
OID ==> OrderedIntegralDomain
DR ==> DifferentialRing
CI ==> ConvertibleTo(Integer)
RT ==> RetractableTo(Integer)
LERO ==> LinearlyExplicitRingOver(Integer)
CTIF ==> ConvertibleTo(InputForm)
CTPI ==> ConvertibleTo(Pattern(Integer))
PM ==> PatternMatchable(Integer)
CFC ==> CombinatorialFunctionCategory
RC ==> RealConstant
CZ ==> CharacteristicZero
ST ==> StepThrough
SIG ==> Join(UFD,ED,OID,DR,CI,RT,LERO,CTIF,CTPI,PM,CFC,RC,CZ,ST) with
odd? : % -> Boolean
++ odd?(n) returns true if and only if n is odd.
even? : % -> Boolean
++ even?(n) returns true if and only if n is even.
multiplicativeValuation
++ euclideanSize(a*b) returns \spad{euclideanSize(a)*euclideanSize(b)}.
base : () -> %
++ base() returns the base for the operations of
++ \spad{IntegerNumberSystem}.
length : % -> %
++ length(a) length of \spad{a} in digits.
shift : (%, %) -> %
++ shift(a,i) shift \spad{a} by i digits.
bit? : (%, %) -> Boolean
++ bit?(n,i) returns true if and only if i-th bit of n is a 1.
positiveRemainder : (%, %) -> %
++ positiveRemainder(a,b) (where \spad{b > 1}) yields r
++ where \spad{0 <= r < b} and \spad{r == a rem b}.
symmetricRemainder : (%, %) -> %
++ symmetricRemainder(a,b) (where \spad{b > 1}) yields r
++ where \spad{ -b/2 <= r < b/2 }.
rational? : % -> Boolean
++ rational?(n) tests if n is a rational number
++ (see \spadtype{Fraction Integer}).
rational : % -> Fraction Integer
++ rational(n) creates a rational number
++ (see \spadtype{Fraction Integer})..
rationalIfCan : % -> Union(Fraction Integer, "failed")
++ rationalIfCan(n) creates a rational number, or returns "failed"
++ if this is not possible.
random : () -> %
++ random() creates a random element.
random : % -> %
++ random(a) creates a random element from 0 to \spad{n-1}.
hash : % -> %
++ hash(n) returns the hash code of n.
copy : % -> %
++ copy(n) gives a copy of n.
inc : % -> %
++ inc(x) returns \spad{x + 1}.
dec : % -> %
++ dec(x) returns \spad{x - 1}.
mask : % -> %
++ mask(n) returns \spad{2**n-1} (an n bit mask).
addmod : (%,%,%) -> %
++ addmod(a,b,p), \spad{0<=a,b<p>1}, means \spad{a+b mod p}.
submod : (%,%,%) -> %
++ submod(a,b,p), \spad{0<=a,b<p>1}, means \spad{a-b mod p}.
mulmod : (%,%,%) -> %
++ mulmod(a,b,p), \spad{0<=a,b<p>1}, means \spad{a*b mod p}.
powmod : (%,%,%) -> %
++ powmod(a,b,p), \spad{0<=a,b<p>1}, means \spad{a**b mod p}.
invmod : (%,%) -> %
++ invmod(a,b), \spad{0<=a<b>1}, \spad{(a,b)=1} means \spad{1/a mod b}.
canonicalUnitNormal
-- commutative("*") -- follows from the above
add
characteristic() == 0
differentiate x == 0
even? x == not odd? x
positive? x == x > 0
copy x == x
bit?(x, i) == odd? shift(x, -i)
mask n == dec shift(1, n)
rational? x == true
euclideanSize(x) ==
x=0 => error "euclideanSize called on zero"
x<0 => (-convert(x)@Integer)::NonNegativeInteger
convert(x)@Integer::NonNegativeInteger
convert(x:%):Float == (convert(x)@Integer)::Float
convert(x:%):DoubleFloat == (convert(x)@Integer)::DoubleFloat
convert(x:%):InputForm == convert(convert(x)@Integer)
retract(x:%):Integer == convert(x)@Integer
convert(x:%):Pattern(Integer)== convert(x)@Integer ::Pattern(Integer)
factor x == factor(x)$IntegerFactorizationPackage(%)
squareFree x == squareFree(x)$IntegerFactorizationPackage(%)
prime? x == prime?(x)$IntegerPrimesPackage(%)
factorial x == factorial(x)$IntegerCombinatoricFunctions(%)
binomial(n, m) == binomial(n, m)$IntegerCombinatoricFunctions(%)
permutation(n, m) == permutation(n,m)$IntegerCombinatoricFunctions(%)
retractIfCan(x:%):Union(Integer, "failed") == convert(x)@Integer
init() == 0
-- iterates in order 0,1,-1,2,-2,3,-3,...
nextItem(n) ==
zero? n => 1
n>0 => -n
1-n
patternMatch(x, p, l) ==
patternMatch(x, p, l)$PatternMatchIntegerNumberSystem(%)
rational(x:%):Fraction(Integer) ==
(convert(x)@Integer)::Fraction(Integer)
rationalIfCan(x:%):Union(Fraction Integer, "failed") ==
(convert(x)@Integer)::Fraction(Integer)
symmetricRemainder(x, n) ==
r := x rem n
r = 0 => r
if n < 0 then n:=-n
r > 0 =>
2 * r > n => r - n
r
2*r + n <= 0 => r + n
r
invmod(a, b) ==
if negative? a then a := positiveRemainder(a, b)
c := a; c1:% := 1
d := b; d1:% := 0
while not zero? d repeat
q := c quo d
r := c-q*d
r1 := c1-q*d1
c := d; c1 := d1
d := r; d1 := r1
not (c = 1) => error "inverse does not exist"
negative? c1 => c1 + b
c1
powmod(x, n, p) ==
if negative? x then x := positiveRemainder(x, p)
zero? x => 0
zero? n => 1
y:% := 1
z := x
repeat
if odd? n then y := mulmod(y, z, p)
zero?(n := shift(n, -1)) => return y
z := mulmod(z, z, p)
|