This file is indexed.

/usr/share/axiom-20170501/src/algebra/INT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
)abbrev domain INT Integer
++ Author: Mark Botch
++ References:
++ Corl00 According to Abramowitz and Stegun or arccoth needn't be Uncouth
++ Fate01a A Critique of OpenMath and Thoughts on Encoding Mathematics
++ Description: 
++ \spadtype{Integer} provides the domain of arbitrary precision integers.

Integer() : SIG == CODE where

  SIG ==> Join(IntegerNumberSystem, ConvertibleTo String, OpenMath) with

    random : % -> %
      ++ random(n) returns a random integer from 0 to \spad{n-1}.

    canonical
      ++ mathematical equality is data structure equality.

    canonicalsClosed
      ++ two positives multiply to give positive.

    noetherian
      ++ ascending chain condition on ideals.

    infinite
      ++ nextItem never returns "failed".

  CODE ==> add

      ZP ==> SparseUnivariatePolynomial %

      ZZP ==> SparseUnivariatePolynomial Integer

      x,y: %

      n: NonNegativeInteger

      writeOMInt(dev: OpenMathDevice, x: %): Void ==
        if x < 0 then
          OMputApp(dev)
          OMputSymbol(dev, "arith1", "unary__minus")
          OMputInteger(dev, (-x) pretend Integer)
          OMputEndApp(dev)
        else
          OMputInteger(dev, x pretend Integer)

      OMwrite(x: %): String ==
        s: String := ""
        sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
        dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
        OMputObject(dev)
        writeOMInt(dev, x)
        OMputEndObject(dev)
        OMclose(dev)
        s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
        s

      OMwrite(x: %, wholeObj: Boolean): String ==
        s: String := ""
        sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
        dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
        if wholeObj then
          OMputObject(dev)
        writeOMInt(dev, x)
        if wholeObj then
          OMputEndObject(dev)
        OMclose(dev)
        s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
        s

      OMwrite(dev: OpenMathDevice, x: %): Void ==
        OMputObject(dev)
        writeOMInt(dev, x)
        OMputEndObject(dev)

      OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void ==
        if wholeObj then
          OMputObject(dev)
        writeOMInt(dev, x)
        if wholeObj then
          OMputEndObject(dev)

      zero? x == 
        ZEROP(x)$Lisp

      one? x == 
        x = 1

      0 == 
        0$Lisp

      1 == 
        1$Lisp

      base() == 
        2$Lisp

      copy x == 
        x

      inc x  == 
        x + 1

      dec x == 
        x - 1

      hash x == 
        SXHASH(x)$Lisp

      negative? x == 
        MINUSP(x)$Lisp

      coerce(x):OutputForm == 
        outputForm(x pretend Integer)

      coerce(m:Integer):% == 
        m pretend %

      convert(x:%):Integer == 
        x pretend Integer

      length a == 
        INTEGER_-LENGTH(a)$Lisp

      addmod(a, b, p) ==
        (c:=a + b) >= p => c - p
        c

      submod(a, b, p) ==
        (c:=a - b) < 0 => c + p
        c

      mulmod(a, b, p) == 
        (a * b) rem p

      convert(x:%):Float == 
        coerce(x pretend Integer)$Float

      convert(x:%):DoubleFloat == 
        coerce(x pretend Integer)$DoubleFloat

      convert(x:%):InputForm == 
        convert(x pretend Integer)$InputForm

      convert(x:%):String == 
        string(x pretend Integer)$String

      latex(x:%):String ==
        s : String := string(x pretend Integer)$String
        (-1 < (x pretend Integer)) and ((x  pretend Integer) < 10) => s
        concat("{", concat(s, "}")$String)$String

      positiveRemainder(a, b) ==
        negative?(r := a rem b) =>
           negative? b => r - b
           r + b
        r

      reducedSystem(m:Matrix %):Matrix(Integer) ==
        m pretend Matrix(Integer)

      reducedSystem(m:Matrix %, v:Vector %):
       Record(mat:Matrix(Integer), vec:Vector(Integer)) ==
        [m pretend Matrix(Integer), vec pretend Vector(Integer)]

      abs(x) == 
        ABS(x)$Lisp

      random() == 
        random()$Lisp

      random(x) == 
        RANDOM(x)$Lisp

      x = y == 
        EQL(x,y)$Lisp

      x < y == 
        (x<y)$Lisp

      - x == 
        (-x)$Lisp

      x + y == 
        (x+y)$Lisp

      x - y == 
        (x-y)$Lisp

      x * y == 
        (x*y)$Lisp

      (m:Integer) * (y:%) == 
        (m*y)$Lisp -- for subsumption problem

      x ** n == 
        EXPT(x,n)$Lisp

      odd? x == 
        ODDP(x)$Lisp

      max(x,y) == 
        MAX(x,y)$Lisp

      min(x,y) == 
        MIN(x,y)$Lisp

      divide(x,y) == 
        DIVIDE2(x,y)$Lisp

      x quo y == 
        QUOTIENT2(x,y)$Lisp

      x rem y == 
        REMAINDER2(x,y)$Lisp

      shift(x, y) == 
        ASH(x,y)$Lisp

      x exquo y ==
         zero? y => "failed"
         zero?(x rem y) => x quo y
         "failed"

      recip(x) == 
        if (x = 1) or x=-1 then x else "failed"

      gcd(x,y) == 
        GCD(x,y)$Lisp

      UCA ==> Record(unit:%,canonical:%,associate:%)

      unitNormal x ==
         x < 0 => [-1,-x,-1]$UCA
         [1,x,1]$UCA

      unitCanonical x == 
        abs x

      solveLinearPolynomialEquation(lp:List ZP,p:ZP):Union(List ZP,"failed") ==
        solveLinearPolynomialEquation(lp pretend List ZZP,
               p pretend ZZP)$IntegerSolveLinearPolynomialEquation pretend
                     Union(List ZP,"failed")

      squareFreePolynomial(p:ZP):Factored ZP ==
        squareFree(p)$UnivariatePolynomialSquareFree(%,ZP)

      factorPolynomial(p:ZP):Factored ZP ==
         -- GaloisGroupFactorizer doesn't factor the content
         -- so we have to do this by hand
         pp:=primitivePart p
         leadingCoefficient pp = leadingCoefficient p =>
             factor(p)$GaloisGroupFactorizer(ZP)
         mergeFactors(factor(pp)$GaloisGroupFactorizer(ZP),
                        map((x1:%):ZP+->x1::ZP,
                            factor((leadingCoefficient p exquo
                                    leadingCoefficient pp)
                                   ::%))$FactoredFunctions2(%,ZP)
                                     )$FactoredFunctionUtilities(ZP)

      factorSquareFreePolynomial(p:ZP):Factored ZP ==
        factorSquareFree(p)$GaloisGroupFactorizer(ZP)

      gcdPolynomial(p:ZP, q:ZP):ZP ==
        zero? p => unitCanonical q
        zero? q => unitCanonical p
        gcd([p,q])$HeuGcd(ZP)