This file is indexed.

/usr/share/axiom-20170501/src/algebra/INTG0.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
)abbrev package INTG0 GenusZeroIntegration
++ Author: Manuel Bronstein
++ Date Created: 11 October 1988
++ Date Last Updated: 24 June 1994
++ Description:
++ Rationalization of several types of genus 0 integrands;
++ This internal package rationalises integrands on curves of the form:\br
++ \tab{5}\spad{y\^2 = a x\^2 + b x + c}\br
++ \tab{5}\spad{y\^2 = (a x + b) / (c x + d)}\br
++ \tab{5}\spad{f(x, y) = 0} where f has degree 1 in x\br
++ The rationalization is done for integration, limited integration,
++ extended integration and the risch differential equation;

GenusZeroIntegration(R, F, L) : SIG == CODE where
  R : Join(GcdDomain, RetractableTo Integer, OrderedSet, CharacteristicZero,
          LinearlyExplicitRingOver Integer)
  F : Join(FunctionSpace R, AlgebraicallyClosedField,
          TranscendentalFunctionCategory)
  L : SetCategory

  SY  ==> Symbol
  Q   ==> Fraction Integer
  K   ==> Kernel F
  P   ==> SparseMultivariatePolynomial(R, K)
  UP  ==> SparseUnivariatePolynomial F
  RF  ==> Fraction UP
  UPUP ==> SparseUnivariatePolynomial RF
  IR  ==> IntegrationResult F
  LOG ==> Record(coeff:F, logand:F)
  U1  ==> Union(F, "failed")
  U2  ==> Union(Record(ratpart:F, coeff:F),"failed")
  U3  ==> Union(Record(mainpart:F, limitedlogs:List LOG), "failed")
  REC ==> Record(coeff:F, var:List K, val:List F)
  ODE ==> Record(particular: Union(F, "failed"), basis: List F)
  LODO==> LinearOrdinaryDifferentialOperator1 RF

  SIG ==> with

    palgint0 : (F, K, K, F, UP)    -> IR
      ++ palgint0(f, x, y, d, p) returns the integral of \spad{f(x,y)dx}
      ++ where y is an algebraic function of x satisfying
      ++ \spad{d(x)\^2 y(x)\^2 = P(x)}.

    palgint0 : (F, K, K, K, F, RF) -> IR
      ++ palgint0(f, x, y, z, t, c) returns the integral of \spad{f(x,y)dx}
      ++ where y is an algebraic function of x satisfying
      ++ \spad{f(x,y)dx = c f(t,y) dy}; c and t are rational functions of y.
      ++ Argument z is a dummy variable not appearing in \spad{f(x,y)}.

    palgextint0 : (F, K, K, F, F, UP) -> U2
      ++ palgextint0(f, x, y, g, d, p) returns functions \spad{[h, c]} such
      ++ that \spad{dh/dx = f(x,y) - c g}, where y is an algebraic function
      ++ of x satisfying \spad{d(x)\^2 y(x)\^2 = P(x)},
      ++ or "failed" if no such functions exist.

    palgextint0 : (F, K, K, F, K, F, RF) -> U2
      ++ palgextint0(f, x, y, g, z, t, c) returns functions \spad{[h, d]} such
      ++ that \spad{dh/dx = f(x,y) - d g}, where y is an algebraic function
      ++ of x satisfying \spad{f(x,y)dx = c f(t,y) dy}, and c and t are 
      ++ rational functions of y.
      ++ Argument z is a dummy variable not appearing in \spad{f(x,y)}.
      ++ The operation returns "failed" if no such functions exist.

    palglimint0 : (F, K, K, List F, F, UP) -> U3
      ++ palglimint0(f, x, y, [u1,...,un], d, p) returns functions
      ++ \spad{[h,[[ci, ui]]]} such that the ui's are among \spad{[u1,...,un]}
      ++ and \spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,
      ++ and "failed" otherwise.
      ++ Argument y is an algebraic function of x satisfying
      ++ \spad{d(x)\^2y(x)\^2 = P(x)}.

    palglimint0 : (F, K, K, List F, K, F, RF) -> U3
      ++ palglimint0(f, x, y, [u1,...,un], z, t, c) returns functions
      ++ \spad{[h,[[ci, ui]]]} such that the ui's are among \spad{[u1,...,un]}
      ++ and \spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,
      ++ and "failed" otherwise.
      ++ Argument y is an algebraic function of x satisfying
      ++ \spad{f(x,y)dx = c f(t,y) dy}; c and t are rational functions of y.

    palgRDE0 : (F, F, K, K, (F, F, SY) -> U1, F, UP) -> U1
      ++ palgRDE0(f, g, x, y, foo, d, p) returns a function \spad{z(x,y)}
      ++ such that \spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a z exists,
      ++ and "failed" otherwise.
      ++ Argument y is an algebraic function of x satisfying
      ++ \spad{d(x)\^2y(x)\^2 = P(x)}.
      ++ Argument foo, called by \spad{foo(a, b, x)}, is a function that solves
      ++ \spad{du/dx + n * da/dx u(x) = u(x)}
      ++ for an unknown \spad{u(x)} not involving y.

    palgRDE0 : (F, F, K, K, (F, F, SY) -> U1, K, F, RF) -> U1
      ++ palgRDE0(f, g, x, y, foo, t, c) returns a function \spad{z(x,y)}
      ++ such that \spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a z exists,
      ++ and "failed" otherwise.
      ++ Argument y is an algebraic function of x satisfying
      ++ \spad{f(x,y)dx = c f(t,y) dy}; c and t are rational functions of y.
      ++ Argument \spad{foo}, called by \spad{foo(a, b, x)}, is a function that
      ++ solves \spad{du/dx + n * da/dx u(x) = u(x)}
      ++ for an unknown \spad{u(x)} not involving y.

    univariate : (F, K, K, UP) -> UPUP
      ++ univariate(f,k,k,p) \undocumented

    multivariate : (UPUP, K, F) -> F
      ++ multivariate(u,k,f) \undocumented

    lift : (UP, K) -> UPUP
      ++ lift(u,k) \undocumented

    if L has LinearOrdinaryDifferentialOperatorCategory F then

      palgLODE0  : (L, F, K, K, F, UP) -> ODE
        ++ palgLODE0(op, g, x, y, d, p) returns the solution of \spad{op f = g}.
        ++ Argument y is an algebraic function of x satisfying
        ++ \spad{d(x)\^2y(x)\^2 = P(x)}.

      palgLODE0  : (L, F, K, K, K, F, RF) -> ODE
        ++ palgLODE0(op,g,x,y,z,t,c) returns the solution of \spad{op f = g}
        ++ Argument y is an algebraic function of x satisfying
        ++ \spad{f(x,y)dx = c f(t,y) dy}; c and t are rational functions of y.

  CODE ==> add

    import RationalIntegration(F, UP)
    import AlgebraicManipulations(R, F)
    import IntegrationResultFunctions2(RF, F)
    import ElementaryFunctionStructurePackage(R, F)
    import SparseUnivariatePolynomialFunctions2(F, RF)
    import PolynomialCategoryQuotientFunctions(IndexedExponents K,
                                                        K, R, P, F)

    mkRat    : (F, REC, List K) -> RF
    mkRatlx  : (F, K, K, F, K, RF) -> RF
    quadsubst: (K, K, F, UP) -> Record(diff:F, subs:REC, newk:List K)
    kerdiff  : (F, F) -> List K
    checkroot: (F, List K) -> F
    univ     : (F, List K, K) -> RF

    dummy := kernel(new()$SY)@K

    kerdiff(sa, a)         == setDifference(kernels sa, kernels a)

    checkroot(f, l)        == (empty? l => f; rootNormalize(f, first l))

    univ(c, l, x)          == univariate(checkroot(c, l), x)

    univariate(f, x, y, p) == lift(univariate(f, y, p), x)

    lift(p, k)             == map(x1+->univariate(x1, k), p)

    palgint0(f, x, y, den, radi) ==
      -- y is a square root so write f as f1 y + f0 and integrate separately
      ff := univariate(f, x, y, minPoly y)
      f0 := reductum ff
      pr := quadsubst(x, y, den, radi)
      map(f1+->f1(x::F), integrate(retract(f0)@RF)) +
        map(f1+->f1(pr.diff),
            integrate
              mkRat(multivariate(leadingMonomial ff,x,y::F), pr.subs, pr.newk))

-- the algebraic relation is (den * y)**2 = p  where p is a * x**2 + b * x + c
-- if p is squarefree, then parametrize in the following form:
--     u  = y - x \sqrt{a}
--     x  = (u^2 - c) / (b - 2 u \sqrt{a}) = h(u)
--     dx = h'(u) du
--     y  = (u + a h(u)) / den = g(u)
-- if a is a perfect square,
--     u  = (y - \sqrt{c}) / x
--     x  = (b - 2 u \sqrt{c}) / (u^2 - a) = h(u)
--     dx = h'(u) du
--     y  = (u h(u) + \sqrt{c}) / den = g(u)
-- otherwise.
-- if p is a square p = a t^2, then we choose only one branch for now:
--     u  = x
--     x  = u = h(u)
--     dx = du
--     y  = t \sqrt{a} / den = g(u)
-- returns [u(x,y), [h'(u), [x,y], [h(u), g(u)], l] in both cases,
-- where l is empty if no new square root was needed,
-- l := [k] if k is the new square root kernel that was created.
    quadsubst(x, y, den, p) ==
      u   := dummy::F
      b   := coefficient(p, 1)
      c   := coefficient(p, 0)
      sa  := rootSimp sqrt(a := coefficient(p, 2))
      zero?(b * b - 4 * a * c) =>    -- case where p = a (x + b/(2a))^2
        [x::F, [1, [x, y], [u, sa * (u + b / (2*a)) / eval(den,x,u)]], empty()]
      empty? kerdiff(sa, a) =>
        bm2u := b - 2 * u * sa
        q    := eval(den, x, xx := (u**2 - c) / bm2u)
        yy   := (ua := u + xx * sa) / q
        [y::F - x::F * sa, [2 * ua / bm2u, [x, y], [xx, yy]], empty()]
      u2ma:= u**2 - a
      sc  := rootSimp sqrt c
      q   := eval(den, x, xx := (b - 2 * u * sc) / u2ma)
      yy  := (ux := xx * u + sc) / q
      [(y::F - sc) / x::F, [- 2 * ux / u2ma, [x ,y], [xx, yy]], kerdiff(sc, c)]

    mkRatlx(f,x,y,t,z,dx) ==
      rat := univariate(eval(f, [x, y], [t, z::F]), z) * dx
      numer(rat) / denom(rat)

    mkRat(f, rec, l) ==
      rat:=univariate(checkroot(rec.coeff * eval(f,rec.var,rec.val), l), dummy)
      numer(rat) / denom(rat)

    palgint0(f, x, y, z, xx, dx) ==
      map(x1+->multivariate(x1, y), integrate mkRatlx(f, x, y, xx, z, dx))

    palgextint0(f, x, y, g, z, xx, dx) ==
      map(x1+->multivariate(x1, y),
            extendedint(mkRatlx(f,x,y,xx,z,dx), mkRatlx(g,x,y,xx,z,dx)))

    palglimint0(f, x, y, lu, z, xx, dx) ==
      map(x1+->multivariate(x1, y), limitedint(mkRatlx(f, x, y, xx, z, dx),
                             [mkRatlx(u, x, y, xx, z, dx) for u in lu]))

    palgRDE0(f, g, x, y, rischde, z, xx, dx) ==
      (u := rischde(eval(f, [x, y], [xx, z::F]),
                      multivariate(dx, z) * eval(g, [x, y], [xx, z::F]),
                          symbolIfCan(z)::SY)) case "failed" => "failed"
      eval(u::F, z, y::F)

    -- given p = sum_i a_i(X) Y^i, returns  sum_i a_i(x) y^i
    multivariate(p, x, y) ==
      (map((x1:RF):F+->multivariate(x1, x),
           p)$SparseUnivariatePolynomialFunctions2(RF, F))
              (y)

    palgextint0(f, x, y, g, den, radi) ==
      pr := quadsubst(x, y, den, radi)
      map(f1+->f1(pr.diff),
          extendedint(mkRat(f, pr.subs, pr.newk), mkRat(g, pr.subs, pr.newk)))

    palglimint0(f, x, y, lu, den, radi) ==
      pr := quadsubst(x, y, den, radi)
      map(f1+->f1(pr.diff),
         limitedint(mkRat(f, pr.subs, pr.newk),
                    [mkRat(u, pr.subs, pr.newk) for u in lu]))

    palgRDE0(f, g, x, y, rischde, den, radi) ==
      pr := quadsubst(x, y, den, radi)
      (u := rischde(checkroot(eval(f, pr.subs.var, pr.subs.val), pr.newk),
                   checkroot(pr.subs.coeff * eval(g, pr.subs.var, pr.subs.val),
                             pr.newk), symbolIfCan(dummy)::SY)) case "failed"
                                    => "failed"
      eval(u::F, dummy, pr.diff)

    if L has LinearOrdinaryDifferentialOperatorCategory F then

      import RationalLODE(F, UP)

      palgLODE0(eq, g, x, y, den, radi) ==
        pr := quadsubst(x, y, den, radi)
        d := monomial(univ(inv(pr.subs.coeff), pr.newk, dummy), 1)$LODO
        di:LODO := 1                  -- will accumulate the powers of d
        op:LODO := 0                  -- will accumulate the new LODO
        for i in 0..degree eq repeat
          op := op + univ(eval(coefficient(eq, i), pr.subs.var, pr.subs.val),
                        pr.newk, dummy) * di
          di := d * di
        rec:= ratDsolve(op,univ(eval(g,pr.subs.var,pr.subs.val),pr.newk,dummy))
        bas:List(F) := [b(pr.diff) for b in rec.basis]
        rec.particular case "failed" => ["failed", bas]
        [((rec.particular)::RF) (pr.diff), bas]

      palgLODE0(eq, g, x, y, kz, xx, dx) ==
        d := monomial(univariate(inv multivariate(dx, kz), kz), 1)$LODO
        di:LODO := 1                  -- will accumulate the powers of d
        op:LODO := 0                  -- will accumulate the new LODO
        lk:List(K) := [x, y]
        lv:List(F) := [xx, kz::F]
        for i in 0..degree eq repeat
          op := op + univariate(eval(coefficient(eq, i), lk, lv), kz) * di
          di := d * di
        rec := ratDsolve(op, univariate(eval(g, lk, lv), kz))
        bas:List(F) := [multivariate(b, y) for b in rec.basis]
        rec.particular case "failed" => ["failed", bas]
        [multivariate((rec.particular)::RF, y), bas]