This file is indexed.

/usr/share/axiom-20170501/src/algebra/INTHEORY.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
)abbrev package INTHEORY IntegerNumberTheoryFunctions
++ Author: Michael Monagan, Martin Brock, Robert Sutor, Timothy Daly
++ Date Created: June 1987
++ References: Knuth, The Art of Computer Programming Vol.2
++ Description:
++ This package provides various number theoretic functions on the integers.

IntegerNumberTheoryFunctions() : SIG == CODE where

  I ==> Integer
  RN ==> Fraction I
  SUP ==> SparseUnivariatePolynomial
  NNI ==> NonNegativeInteger

  SIG ==> with

    bernoulli : I -> RN
      ++ \spad{bernoulli(n)} returns the nth Bernoulli number.
      ++ this is \spad{B(n,0)}, where \spad{B(n,x)} is the \spad{n}th Bernoulli
      ++ polynomial.

    chineseRemainder : (I,I,I,I) -> I
      ++ \spad{chineseRemainder(x1,m1,x2,m2)} returns w, where w is such that
      ++ \spad{w = x1 mod m1} and \spad{w = x2 mod m2}. Note that \spad{m1} and
      ++ \spad{m2} must be relatively prime.

    divisors : I -> List I
      ++ \spad{divisors(n)} returns a list of the divisors of n.

    euler : I -> I
      ++ \spad{euler(n)} returns the \spad{n}th Euler number. This is
      ++ \spad{2^n E(n,1/2)}, where \spad{E(n,x)} is the nth Euler polynomial.

    eulerPhi : I -> I
      ++ \spad{eulerPhi(n)} returns the number of integers between 1 and n
      ++ (including 1) which are relatively prime to n. This is the Euler phi
      ++ function \spad{\phi(n)} is also called the totient function.

    fibonacci : I -> I
      ++ \spad{fibonacci(n)} returns the nth Fibonacci number. the Fibonacci
      ++ numbers \spad{F[n]} are defined by \spad{F[0] = F[1] = 1} and
      ++ \spad{F[n] = F[n-1] + F[n-2]}.
      ++ The algorithm has running time \spad{O(log(n)^3)}.
      ++ Reference: Knuth, The Art of Computer Programming
      ++ Vol 2, Semi-Numerical Algorithms.

    harmonic : I -> RN
      ++ \spad{harmonic(n)} returns the nth harmonic number. This is
      ++ \spad{H[n] = sum(1/k,k=1..n)}.

    jacobi : (I,I) -> I
      ++ \spad{jacobi(a,b)} returns the Jacobi symbol \spad{J(a/b)}.
      ++ When b is odd, \spad{J(a/b) = product(L(a/p) for p in factor b )}.
      ++ Note that by convention, 0 is returned if \spad{gcd(a,b) ^= 1}.
      ++ Iterative \spad{O(log(b)^2)} version coded by Michael Monagan June 1987.

    legendre : (I,I) -> I
      ++ \spad{legendre(a,p)} returns the Legendre symbol \spad{L(a/p)}.
      ++ \spad{L(a/p) = (-1)**((p-1)/2) mod p} (p prime), which is 0 if \spad{a}
      ++ is 0, 1 if \spad{a} is a quadratic residue \spad{mod p} and -1 otherwise.
      ++ Note that because the primality test is expensive,
      ++ if it is known that p is prime then use \spad{jacobi(a,p)}.

    moebiusMu : I -> I
      ++ \spad{moebiusMu(n)} returns the Moebius function \spad{mu(n)}.
      ++ \spad{mu(n)} is either -1,0 or 1 as follows:
      ++ \spad{mu(n) = 0} if n is divisible by a square > 1,
      ++ \spad{mu(n) = (-1)^k} if n is square-free and has k distinct
      ++ prime divisors.

    numberOfDivisors: I -> I
      ++ \spad{numberOfDivisors(n)} returns the number of integers between 1 and n
      ++ (inclusive) which divide n. The number of divisors of n is often
      ++ denoted by \spad{tau(n)}.

    sumOfDivisors : I -> I
      ++ \spad{sumOfDivisors(n)} returns the sum of the integers between 1 and n
      ++ (inclusive) which divide n. The sum of the divisors of n is often
      ++ denoted by \spad{sigma(n)}.

    sumOfKthPowerDivisors: (I,NNI) -> I
      ++ \spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \spad{k}th
      ++ powers of the integers between 1 and n (inclusive) which divide n.
      ++ the sum of the \spad{k}th powers of the divisors of n is often denoted
      ++ by \spad{sigma_k(n)}.

  CODE ==> add

   import IntegerPrimesPackage(I)

   -- we store the euler and bernoulli numbers computed so far in
   -- a Vector because they are computed from an n-term recurrence
   E: IndexedFlexibleArray(I,0)   := new(1, 1)
   B: IndexedFlexibleArray(RN,0)  := new(1, 1)
   H: Record(Hn:I,Hv:RN) := [1, 1]

   harmonic n ==
     s:I; h:RN
     n < 0 => error("harmonic not defined for negative integers")
     if n >= H.Hn then (s,h) := H else (s := 0; h := 0)
     for k in s+1..n repeat h := h + 1/k
     H.Hn := n
     H.Hv := h
     h

   fibonacci n ==
     n = 0 => 0
     n < 0 => (odd? n => 1; -1) * fibonacci(-n)
     f1, f2 : I
     (f1,f2) := (0,1)
     for k in length(n)-2 .. 0 by -1 repeat
       t := f2**2
       (f1,f2) := (t+f1**2,t+2*f1*f2)
       if bit?(n,k) then (f1,f2) := (f2,f1+f2)
     f2

   euler n ==
     n < 0 => error "euler not defined for negative integers"
     odd? n => 0
     l := (#E) :: I
     n < l => E(n)
     concat_!(E, new((n+1-l)::NNI, 0)$IndexedFlexibleArray(I,0))
     for i in 1 .. l by 2 repeat E(i) := 0
     -- compute E(i) i = l+2,l+4,...,n given E(j) j = 0,2,...,i-2
     t,e : I
     for i in l+1 .. n by 2 repeat
       t := e := 1
       for j in 2 .. i-2 by 2 repeat
         t := (t*(i-j+1)*(i-j+2)) quo (j*(j-1))
         e := e + t*E(j)
       E(i) := -e
     E(n)

   bernoulli n ==
     n < 0 => error "bernoulli not defined for negative integers"
     odd? n =>
       n = 1 => -1/2
       0
     l := (#B) :: I
     n < l => B(n)
     concat_!(B, new((n+1-l)::NNI, 0)$IndexedFlexibleArray(RN,0))
     -- compute B(i) i = l+2,l+4,...,n given B(j) j = 0,2,...,i-2
     for i in l+1 .. n by 2 repeat
       t:I := 1
       b := (1-i)/2
       for j in 2 .. i-2 by 2 repeat
         t := (t*(i-j+2)*(i-j+3)) quo (j*(j-1))
         b := b + (t::RN) * B(j)
       B(i) := -b/((i+1)::RN)
     B(n)

   inverse : (I,I) -> I

   inverse(a,b) ==
     borg:I:=b
     c1:I := 1
     d1:I := 0
     while b ^= 0 repeat
       q:I := a quo b
       r:I := a-q*b
       (a,b):=(b,r)
       (c1,d1):=(d1,c1-q*d1)
     a ^= 1 => error("moduli are not relatively prime")
     positiveRemainder(c1,borg)

   chineseRemainder(x1,m1,x2,m2) ==
     m1 < 0 or m2 < 0 => error "moduli must be positive"
     x1 := positiveRemainder(x1,m1)
     x2 := positiveRemainder(x2,m2)
     x1 + m1 * positiveRemainder(((x2-x1) * inverse(m1,m2)),m2)

   jacobi(a,b) ==
     -- Revised by Clifton Williamson January 1989.
     -- Previous version returned incorrect answers when b was even.
     -- The formula J(a/b) = product ( L(a/p) for p in factor b) is only
     -- valid when b is odd (the Legendre symbol L(a/p) is not defined
     -- for p = 2).  When b is even, the Jacobi symbol J(a/b) is only
     -- defined for a = 0 or 1 (mod 4).  When a = 1 (mod 8),
     -- J(a/2) = +1 and when a = 5 (mod 8), we define J(a/2) = -1.
     -- Extending by multiplicativity, we have J(a/b) for even b and
     -- appropriate a.
     -- We also define J(a/1) = 1.
     -- The point of this is the following: if d is the discriminant of
     -- a quadratic field K and chi is the quadratic character for K,
     -- then J(d/n) = chi(n) for n > 0.
     -- Reference: Hecke, Vorlesungen ueber die Theorie der Algebraischen
     -- Zahlen.
     if b < 0 then b := -b
     b = 0 => error "second argument of jacobi may not be 0"
     b = 1 => 1
     even? b and positiveRemainder(a,4) > 1 =>
       error "J(a/b) not defined for b even and a = 2 or 3 (mod 4)"
     even? b and even? a => 0
     for k in 0.. while even? b repeat b := b quo 2
     j:I := (odd? k and positiveRemainder(a,8) = 5 => -1; 1)
     b = 1 => j
     a := positiveRemainder(a,b)
     -- assertion: 0 < a < b and odd? b
     while a > 1 repeat
       if odd? a then
         -- J(a/b) = J(b/a) (-1) ** (a-1)/2 (b-1)/2
         if a rem 4 = 3 and b rem 4 = 3 then j := -j
         (a,b) := (b rem a,a)
       else
         -- J(2*a/b) = J(a/b) (-1) (b**2-1)/8
         for k in 0.. until odd? a repeat a := a quo 2
         if odd? k and (b+2) rem 8 > 4 then j := -j
     a = 0 => 0
     j

   legendre(a,p) ==
     prime? p => jacobi(a,p)
     error "characteristic of legendre must be prime"

   eulerPhi n ==
     n = 0 => 0
     r : RN := 1
     for entry in factors factor n repeat
       r := ((entry.factor - 1) /$RN entry.factor) * r
     numer(n * r)

   divisors n ==
     oldList : List Integer := [1]
     for f in factors factor n repeat
       newList : List Integer := oldList
       for k in 1..f.exponent repeat
         pow := f.factor ** k
         for m in oldList repeat
           newList := concat(pow * m,newList)
       oldList := newList
     sort((i1:Integer,i2:Integer):Boolean +-> i1 < i2,oldList)

   numberOfDivisors n ==
     n = 0 => 0
     */[1+entry.exponent for entry in factors factor n]

   sumOfDivisors n ==
     n = 0 => 0
     r : RN := */[(entry.factor**(entry.exponent::NNI + 1)-1)/
       (entry.factor-1) for entry in factors factor n]
     numer r

   sumOfKthPowerDivisors(n,k) ==
     n = 0 => 0
     r : RN := */[(entry.factor**(k*entry.exponent::NNI+k)-1)/
       (entry.factor**k-1) for entry in factors factor n]
     numer r

   moebiusMu n ==
     n = 1 => 1
     t := factor n
     for k in factors t repeat
       k.exponent > 1 => return 0
     odd? numberOfFactors t => -1
     1