This file is indexed.

/usr/share/axiom-20170501/src/algebra/INTPACK.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
)abbrev package INTPACK AnnaNumericalIntegrationPackage
++ Author: Brian Dupee
++ Date Created: August 1994
++ Date Last Updated: December 1997
++ Description:
++ \axiomType{AnnaNumericalIntegrationPackage} is a \axiom{package}
++ of functions for the \axiom{category} 
++ \axiomType{NumericalIntegrationCategory} 
++ with \axiom{measure}, and \axiom{integrate}.

AnnaNumericalIntegrationPackage() : SIG == CODE where 

 EDF  ==> Expression DoubleFloat
 DF  ==> DoubleFloat
 EF  ==> Expression Float
 F  ==> Float
 INT  ==> Integer
 SOCDF  ==> Segment OrderedCompletion DoubleFloat
 OCDF  ==> OrderedCompletion DoubleFloat
 SBOCF  ==> SegmentBinding OrderedCompletion Float
 LSOCF  ==> List Segment OrderedCompletion Float
 SOCF  ==> Segment OrderedCompletion Float
 OCF  ==> OrderedCompletion Float
 LS  ==> List Symbol
 S  ==> Symbol
 LST  ==> List String
 ST  ==> String
 RT  ==> RoutinesTable
 NIA  ==> Record(var:S, fn:EDF, range:SOCDF, abserr:DF, relerr:DF)
 MDNIA  ==> Record(fn:EDF,range:List SOCDF,abserr:DF,relerr:DF)
 IFL  ==> List(Record(ifail:Integer,instruction:String))
 Entry  ==> Record(chapter:String, type:String, domainName: String, 
                   defaultMin:F, measure:F, failList:IFL, explList:List String)
 Measure  ==> Record(measure:F, name:ST, explanations:LST, extra:Result)

 SIG ==> with

  integrate : (EF,SOCF,F,F,RT) -> Result
    ++ integrate(exp, a..b, epsrel, routines) is a top level ANNA function 
    ++ to integrate an expression, {\tt exp}, over a given range {\tt a} 
    ++ to {\tt b} to the required absolute and relative accuracy using 
    ++ the routines available in the RoutinesTable provided.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} 
    ++ to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.  

  integrate : NumericalIntegrationProblem -> Result
    ++ integrate(IntegrationProblem) is a top level ANNA function 
    ++ to integrate an expression over a given range or ranges 
    ++ to the required absolute and relative accuracy.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.  

  integrate : (EF,SOCF,F,F) -> Result
    ++ integrate(exp, a..b, epsabs, epsrel) is a top level ANNA function 
    ++ to integrate an expression, {\tt exp}, over a given range {\tt a} 
    ++ to {\tt b} to the required absolute and relative accuracy.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.  

  integrate : (EF,SOCF,F) -> Result
    ++ integrate(exp, a..b, epsrel) is a top level ANNA 
    ++ function to integrate an expression, {\tt exp}, over a given
    ++ range {\tt a} to {\tt b} to the required relative accuracy.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.  
    ++
    ++ If epsrel = 0, a default absolute accuracy is used.
 
  integrate : (EF,SOCF) -> Result
    ++ integrate(exp, a..b) is a top 
    ++ level ANNA function to integrate an expression, {\tt exp},
    ++ over a given range {\tt a} to {\tt b}.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.  
    ++
    ++ Default values for the absolute and relative error are used.

  integrate : (EF,LSOCF) -> Result
    ++ integrate(exp, [a..b,c..d,...]) is a top 
    ++ level ANNA function to integrate a multivariate expression, {\tt exp},
    ++ over a given set of ranges.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.  
    ++
    ++ Default values for the absolute and relative error are used.

  integrate : (EF,LSOCF,F) -> Result
    ++ integrate(exp, [a..b,c..d,...], epsrel) is a top 
    ++ level ANNA function to integrate a multivariate expression, {\tt exp},
    ++ over a given set of ranges to the required relative
    ++ accuracy.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.  
    ++
    ++ If epsrel = 0, a default absolute accuracy is used.

  integrate : (EF,LSOCF,F,F) -> Result
    ++ integrate(exp, [a..b,c..d,...], epsabs, epsrel) is a top 
    ++ level ANNA function to integrate a multivariate expression, {\tt exp},
    ++ over a given set of ranges to the required absolute and relative
    ++ accuracy.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.

  integrate : (EF,LSOCF,F,F,RT) -> Result
    ++ integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines) is a top 
    ++ level ANNA function to integrate a multivariate expression, {\tt exp},
    ++ over a given set of ranges to the required absolute and relative
    ++ accuracy, using the routines available in the RoutinesTable provided.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.

  measure : NumericalIntegrationProblem -> Measure
    ++ measure(prob) is a top level ANNA function for identifying the most
    ++ appropriate numerical routine for solving the numerical integration
    ++ problem defined by \axiom{prob}.
    ++
    ++ It calls each \axiom{domain} of \axiom{category}
    ++ \axiomType{NumericalIntegrationCategory} in turn to calculate all measures
    ++ and returns the best 
    ++ the name of the most appropriate domain and any other relevant
    ++ information.

  measure : (NumericalIntegrationProblem,RT) -> Measure
    ++ measure(prob,R) is a top level ANNA function for identifying the most
    ++ appropriate numerical routine from those in the routines table
    ++ provided for solving the numerical integration
    ++ problem defined by \axiom{prob}.
    ++
    ++ It calls each \axiom{domain} listed in \axiom{R} of \axiom{category}
    ++ \axiomType{NumericalIntegrationCategory} in turn to calculate all measures
    ++ and returns the best 
    ++ the name of the most appropriate domain and any other relevant
    ++ information.

  integrate : (EF,SBOCF,ST) -> Union(Result,"failed")
    ++ integrate(exp, x = a..b, "numerical") is a top level ANNA function to 
    ++ integrate an expression, {\tt exp}, over a given range, {\tt a}
    ++ to {\tt b}.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.
    ++ 
    ++ Default values for the absolute and relative error are used.
    ++
    ++ It is an error of the last argument is not {\tt "numerical"}.

  integrate : (EF,SBOCF,S) -> Union(Result,"failed")
    ++ integrate(exp, x = a..b, numerical) is a top level ANNA function to 
    ++ integrate an expression, {\tt exp}, over a given range, {\tt a}
    ++ to {\tt b}.
    ++ 
    ++ It iterates over the \axiom{domains} of 
    ++ \axiomType{NumericalIntegrationCategory} to get the name and other 
    ++ relevant information of the the (domain of the) numerical 
    ++ routine likely to be the most appropriate, 
    ++ have the best \axiom{measure}.
    ++ 
    ++ It then performs the integration of the given expression 
    ++ on that \axiom{domain}.
    ++ 
    ++ Default values for the absolute and relative error are used.
    ++
    ++ It is an error if the last argument is not {\tt numerical}.

 CODE ==> add

  zeroMeasure: Measure -> Result
  scriptedVariables?: MDNIA -> Boolean
  preAnalysis:(Union(nia:NIA,mdnia:MDNIA),RT) -> RT
  measureSpecific:(ST,RT,Union(nia:NIA,mdnia:MDNIA)) -> _
      Record(measure:F,explanations:LST,extra:Result)
  changeName:(Result,ST) -> Result
  recoverAfterFail:(Union(nia:NIA,mdnia:MDNIA),RT,Measure,INT,Result) -> _
      Record(a:Result,b:Measure)
  better?:(Result,Result) -> Boolean
  integrateConstant:(EF,SOCF) -> Result
  integrateConstantList: (EF,LSOCF) -> Result
  integrateArgs:(NumericalIntegrationProblem,RT) -> Result
  integrateSpecific:(Union(nia:NIA,mdnia:MDNIA),ST,Result) -> Result

  import ExpertSystemToolsPackage

  integrateConstantList(exp:EF,ras:LSOCF):Result ==
    c:OCF := ((retract(exp)@F)$EF)::OCF
    b := [hi(j)-lo(j) for j in ras]
    c := c*reduce((x,y) +-> x*y,b)
    a := coerce(c)$AnyFunctions1(OCF)
    text := coerce("Constant Function")$AnyFunctions1(ST)
    construct([[result@S,a],[method@S,text]])$Result
    
  integrateConstant(exp:EF,ra:SOCF):Result ==
    c := (retract(exp)@F)$EF
    r:OCF := (c::OCF)*(hi(ra)-lo(ra))
    a := coerce(r)$AnyFunctions1(OCF)
    text := coerce("Constant Function")$AnyFunctions1(ST)
    construct([[result@S,a],[method@S,text]])$Result
    
  zeroMeasure(m:Measure):Result ==
    a := coerce(0$DF)$AnyFunctions1(DF)
    text := coerce("Constant Function")$AnyFunctions1(String)
    r := construct([[result@Symbol,a],[method@Symbol,text]])$Result
    concat(measure2Result m,r)$ExpertSystemToolsPackage

  scriptedVariables?(mdnia:MDNIA):Boolean ==
    vars:List Symbol := variables(mdnia.fn)$EDF
    var1 := first(vars)$(List Symbol)
    not scripted?(var1) => false
    name1 := name(var1)$Symbol
    for i in 2..# vars repeat
      not ((scripted?(vars.i)$Symbol) and (name1 = name(vars.i)$Symbol)) => 
         return false
    true

  preAnalysis(args:Union(nia:NIA,mdnia:MDNIA),t:RT):RT ==
    import RT
    r:RT := selectIntegrationRoutines t
    args case nia => 
      arg:NIA := args.nia
      rangeIsFinite(arg)$d01AgentsPackage case finite => 
        selectFiniteRoutines r
      selectNonFiniteRoutines r
    selectMultiDimensionalRoutines r
    
  changeName(ans:Result,name:ST):Result ==
    sy:S := coerce(name "Answer")$S
    anyAns:Any := coerce(ans)$AnyFunctions1(Result)
    construct([[sy,anyAns]])$Result

  measureSpecific(name:ST,R:RT,args:Union(nia:NIA,mdnia:MDNIA)):
      Record(measure:F,explanations:ST,extra:Result) ==
    args case nia => 
      arg:NIA := args.nia
      name = "d01ajfAnnaType" => measure(R,arg)$d01ajfAnnaType
      name = "d01akfAnnaType" => measure(R,arg)$d01akfAnnaType
      name = "d01alfAnnaType" => measure(R,arg)$d01alfAnnaType
      name = "d01amfAnnaType" => measure(R,arg)$d01amfAnnaType
      name = "d01anfAnnaType" => measure(R,arg)$d01anfAnnaType
      name = "d01apfAnnaType" => measure(R,arg)$d01apfAnnaType
      name = "d01aqfAnnaType" => measure(R,arg)$d01aqfAnnaType
      name = "d01asfAnnaType" => measure(R,arg)$d01asfAnnaType
      name = "d01TransformFunctionType" => 
                     measure(R,arg)$d01TransformFunctionType
      error("measureSpecific","invalid type name: " name)$ErrorFunctions
    args case mdnia => 
      arg2:MDNIA := args.mdnia
      name = "d01gbfAnnaType" => measure(R,arg2)$d01gbfAnnaType
      name = "d01fcfAnnaType" => measure(R,arg2)$d01fcfAnnaType
      error("measureSpecific","invalid type name: " name)$ErrorFunctions
    error("measureSpecific","invalid type name")$ErrorFunctions

  measure(a:NumericalIntegrationProblem,R:RT):Measure ==
    args:Union(nia:NIA,mdnia:MDNIA) := retract(a)$NumericalIntegrationProblem
    sofar := 0$F
    best := "none" :: ST
    routs := copy R
    routs := preAnalysis(args,routs)
    empty?(routs)$RT => 
      error("measure", "no routines found")$ErrorFunctions
    rout := inspect(routs)$RT
    e := retract(rout.entry)$AnyFunctions1(Entry)
    meth:LST := ["Trying " e.type " integration routines"]
    ext := empty()$Result
    for i in 1..# routs repeat
      rout := extract!(routs)$RT
      e := retract(rout.entry)$AnyFunctions1(Entry)
      n := e.domainName
      if e.defaultMin > sofar then
        m := measureSpecific(n,R,args)
        if m.measure > sofar then
          sofar := m.measure
          best := n
        ext := concat(m.extra,ext)$ExpertSystemToolsPackage
        str:LST := [string(rout.key)$S "measure: " outputMeasure(m.measure) 
                     " - " m.explanations]
      else
        str:LST :=  [string(rout.key)$S " is no better than other routines"]
      meth := append(meth,str)$LST
    [sofar,best,meth,ext]

  measure(a:NumericalIntegrationProblem):Measure ==
    measure(a,routines()$RT)

  integrateSpecific(args:Union(nia:NIA,mdnia:MDNIA),n:ST,ex:Result):Result ==
    args case nia => 
      arg:NIA := args.nia
      n = "d01ajfAnnaType" => numericalIntegration(arg,ex)$d01ajfAnnaType
      n = "d01TransformFunctionType" =>
        numericalIntegration(arg,ex)$d01TransformFunctionType
      n = "d01amfAnnaType" => numericalIntegration(arg,ex)$d01amfAnnaType
      n = "d01apfAnnaType" => numericalIntegration(arg,ex)$d01apfAnnaType
      n = "d01aqfAnnaType" => numericalIntegration(arg,ex)$d01aqfAnnaType
      n = "d01alfAnnaType" => numericalIntegration(arg,ex)$d01alfAnnaType
      n = "d01akfAnnaType" => numericalIntegration(arg,ex)$d01akfAnnaType
      n = "d01anfAnnaType" => numericalIntegration(arg,ex)$d01anfAnnaType
      n = "d01asfAnnaType" => numericalIntegration(arg,ex)$d01asfAnnaType
      error("integrateSpecific","invalid type name: " n)$ErrorFunctions
    args case mdnia => 
      arg2:MDNIA := args.mdnia
      n = "d01gbfAnnaType" => numericalIntegration(arg2,ex)$d01gbfAnnaType
      n = "d01fcfAnnaType" => numericalIntegration(arg2,ex)$d01fcfAnnaType
      error("integrateSpecific","invalid type name: " n)$ErrorFunctions
    error("integrateSpecific","invalid type name: " n)$ErrorFunctions

  better?(r:Result,s:Result):Boolean ==
    a1 := search("abserr"::S,r)$Result
    a1 case "failed" => false
    abserr1 := retract(a1)$AnyFunctions1(DF)
    negative?(abserr1) => false
    a2 := search("abserr"::S,s)$Result
    a2 case "failed" => true
    abserr2 := retract(a2)$AnyFunctions1(DF)
    negative?(abserr2) => true
    (abserr1 < abserr2) -- true if r.abserr better than s.abserr

  recoverAfterFail(n:Union(nia:NIA,mdnia:MDNIA),routs:RT,m:Measure,iint:INT,
                         r:Result):Record(a:Result,b:Measure) ==
    bestName := m.name
    while positive?(iint) repeat
      routineName := m.name
      s := recoverAfterFail(routs,routineName(1..6),iint)$RoutinesTable
      s case "failed" => iint := 0
      if s = "changeEps" then
        nn := n.nia
        zero?(nn.abserr) =>
          nn.abserr := 1.0e-8 :: DF
          m := measure(n::NumericalIntegrationProblem,routs)
          zero?(m.measure) => iint := 0
          r := integrateSpecific(n,m.name,m.extra)
          iint := 0
      rn := routineName(1..6)
      buttVal := getButtonValue(rn,"functionEvaluations")$AttributeButtons
      if (s = "incrFunEvals") and (buttVal < 0.8) then
        increase(rn,"functionEvaluations")$AttributeButtons
      if s = "increase tolerance" then
        (n.nia).relerr := (n.nia).relerr*(10.0::DF)
      if s = "decrease tolerance" then
        (n.nia).relerr := (n.nia).relerr/(10.0::DF)
      fl := coerce(s)$AnyFunctions1(ST)
      flrec:Record(key:S,entry:Any):=[failure@S,fl]
      m2 := measure(n::NumericalIntegrationProblem,routs)
      zero?(m2.measure) => iint := 0
      r2:Result := integrateSpecific(n,m2.name,m2.extra)
      better?(r,r2) => 
        m.name := m2.name
        insert!(flrec,r)$Result
      bestName := m2.name
      m := m2
      insert!(flrec,r2)$Result
      r := concat(r2,changeName(r,routineName))$ExpertSystemToolsPackage
      iany := search(ifail@S,r2)$Result
      iany case "failed" => iint := 0
      iint := retract(iany)$AnyFunctions1(INT)
    m.name := bestName
    [r,m]

  integrateArgs(prob:NumericalIntegrationProblem,t:RT):Result ==
    args:Union(nia:NIA,mdnia:MDNIA):= retract(prob)$NumericalIntegrationProblem
    routs := copy(t)$RT
    if args case mdnia then
      arg := args.mdnia
      v := (# variables(arg.fn))
      not scriptedVariables?(arg) => 
        error("MultiDimensionalNumericalIntegrationPackage",
                "invalid variable names")$ErrorFunctions
      (v ~= # arg.range)@Boolean =>
        error("MultiDimensionalNumericalIntegrationPackage",
          "number of variables do not match number of ranges")$ErrorFunctions
    m := measure(prob,routs)
    zero?(m.measure) => zeroMeasure m
    r := integrateSpecific(args,m.name,m.extra)
    iany := search(ifail@S,r)$Result
    iint := 0$INT
    if (iany case Any) then
      iint := retract(iany)$AnyFunctions1(INT)
    if positive?(iint) then
      tu:Record(a:Result,b:Measure) := recoverAfterFail(args,routs,m,iint,r)
      r := tu.a
      m := tu.b
    r := concat(measure2Result m,r)$ExpertSystemToolsPackage
    n := m.name
    nn:ST := 
      (# n > 14) => "d01transform"
      n(1..6)
    expl := getExplanations(routs,nn)$RoutinesTable
    expla := coerce(expl)$AnyFunctions1(LST)
    explaa:Record(key:Symbol,entry:Any) := ["explanations"::Symbol,expla]
    r := concat(construct([explaa]),r)
    args case nia =>
      att := showAttributes(args.nia)$IntegrationFunctionsTable
      att case "failed" => r
      concat(att2Result att,r)$ExpertSystemToolsPackage
    r

  integrate(args:NumericalIntegrationProblem):Result ==
    integrateArgs(args,routines()$RT)

  integrate(exp:EF,ra:SOCF,epsabs:F,epsrel:F,r:RT):Result ==
    Var:LS := variables(exp)$EF
    empty?(Var)$LS => integrateConstant(exp,ra)
    args:NIA:= [first(Var)$LS,ef2edf exp,socf2socdf ra,f2df epsabs,f2df epsrel]
    integrateArgs(args::NumericalIntegrationProblem,r)

  integrate(exp:EF,ra:SOCF,epsabs:F,epsrel:F):Result ==
    integrate(exp,ra,epsabs,epsrel,routines()$RT)

  integrate(exp:EF,ra:SOCF,err:F):Result ==
    positive?(err)$F => integrate(exp,ra,0$F,err)
    integrate(exp,ra,1.0E-5,err)

  integrate(exp:EF,ra:SOCF):Result == integrate(exp,ra,0$F,1.0E-5)

  integrate(exp:EF,sb:SBOCF, st:ST) ==
    st = "numerical" => integrate(exp,segment sb)
    "failed"

  integrate(exp:EF,sb:SBOCF, s:S) ==
    s = (numerical::Symbol) => integrate(exp,segment sb)
    "failed"

  integrate(exp:EF,ra:LSOCF,epsabs:F,epsrel:F,r:RT):Result ==
    vars := variables(exp)$EF
    empty?(vars)$LS => integrateConstantList(exp,ra)
    args:MDNIA := [ef2edf exp,convert ra,f2df epsabs,f2df epsrel]
    integrateArgs(args::NumericalIntegrationProblem,r)

  integrate(exp:EF,ra:LSOCF,epsabs:F,epsrel:F):Result ==
    integrate(exp,ra,epsabs,epsrel,routines()$RT)

  integrate(exp:EF,ra:LSOCF,epsrel:F):Result ==
    zero? epsrel => integrate(exp,ra,1.0e-6,epsrel)
    integrate(exp,ra,0$F,epsrel)

  integrate(exp:EF,ra:LSOCF):Result == integrate(exp,ra,1.0e-4)