This file is indexed.

/usr/share/axiom-20170501/src/algebra/INTPAF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
)abbrev package INTPAF PureAlgebraicIntegration
++ Author: Manuel Bronstein
++ Date Created: 27 May 1988
++ Date Last Updated: 24 June 1994
++ Description:
++ Integration of pure algebraic functions;
++ This package provides functions for integration, limited integration,
++ extended integration and the risch differential equation for
++ pure algebraic integrands;

PureAlgebraicIntegration(R, F, L) : SIG == CODE where
  R : Join(GcdDomain,RetractableTo Integer,OrderedSet, CharacteristicZero,
           LinearlyExplicitRingOver Integer)
  F : Join(FunctionSpace R, AlgebraicallyClosedField,
           TranscendentalFunctionCategory)
  L : SetCategory

  SY  ==> Symbol
  N   ==> NonNegativeInteger
  K   ==> Kernel F
  P   ==> SparseMultivariatePolynomial(R, K)
  UP  ==> SparseUnivariatePolynomial F
  RF  ==> Fraction UP
  UPUP==> SparseUnivariatePolynomial RF
  IR  ==> IntegrationResult F
  IR2 ==> IntegrationResultFunctions2(curve, F)
  ALG ==> AlgebraicIntegrate(R, F, UP, UPUP, curve)
  LDALG ==> LinearOrdinaryDifferentialOperator1 curve
  RDALG ==> PureAlgebraicLODE(F, UP, UPUP, curve)
  LOG ==> Record(coeff:F, logand:F)
  REC ==> Record(particular:U1, basis:List F)
  CND ==> Record(left:UP, right:UP)
  CHV ==> Record(int:UPUP, left:UP, right:UP, den:RF, deg:N)
  U1  ==> Union(F, "failed")
  U2  ==> Union(Record(ratpart:F, coeff:F),"failed")
  U3  ==> Union(Record(mainpart:F, limitedlogs:List LOG), "failed")
  FAIL==> error "failed - cannot handle that integrand"

  SIG ==> with

    palgint : (F, K, K) -> IR
      ++ palgint(f, x, y) returns the integral of \spad{f(x,y)dx}
      ++ where y is an algebraic function of x.

    palgextint : (F, K, K, F) -> U2
      ++ palgextint(f, x, y, g) returns functions \spad{[h, c]} such that
      ++ \spad{dh/dx = f(x,y) - c g}, where y is an algebraic function of x;
      ++ returns "failed" if no such functions exist.

    palglimint : (F, K, K, List F) -> U3
      ++ palglimint(f, x, y, [u1,...,un]) returns functions
      ++ \spad{[h,[[ci, ui]]]} such that the ui's are among \spad{[u1,...,un]}
      ++ and \spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,
      ++ "failed" otherwise;
      ++ y is an algebraic function of x.

    palgRDE : (F, F, F, K, K, (F, F, SY) -> U1) -> U1
      ++ palgRDE(nfp, f, g, x, y, foo) returns a function \spad{z(x,y)}
      ++ such that \spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a z exists,
      ++ "failed" otherwise;
      ++ y is an algebraic function of x;
      ++ \spad{foo(a, b, x)} is a function that solves
      ++ \spad{du/dx + n * da/dx u(x) = u(x)}
      ++ for an unknown \spad{u(x)} not involving y.
      ++ \spad{nfp} is \spad{n * df/dx}.

    if L has LinearOrdinaryDifferentialOperatorCategory F then

      palgLODE : (L, F, K, K, SY) -> REC
        ++ palgLODE(op, g, kx, y, x) returns the solution of \spad{op f = g}.
        ++ y is an algebraic function of x.

  CODE ==> add

    import IntegrationTools(R, F)
    import RationalIntegration(F, UP)
    import GenusZeroIntegration(R, F, L)
    import ChangeOfVariable(F, UP, UPUP)
    import IntegrationResultFunctions2(F, F)
    import IntegrationResultFunctions2(RF, F)
    import SparseUnivariatePolynomialFunctions2(F, RF)
    import UnivariatePolynomialCommonDenominator(UP, RF, UPUP)
    import PolynomialCategoryQuotientFunctions(IndexedExponents K,
                                                        K, R, P, F)

    quadIfCan      : (K, K) -> Union(Record(coef:F, poly:UP), "failed")
    linearInXIfCan : (K, K) -> Union(Record(xsub:F, dxsub:RF), "failed")
    prootintegrate : (F, K, K) -> IR
    prootintegrate1: (UPUP, K, K, UPUP) -> IR
    prootextint    : (F, K, K, F) -> U2
    prootlimint    : (F, K, K, List F) -> U3
    prootRDE       : (F, F, F, K, K, (F, F, SY) -> U1) -> U1
    palgRDE1       : (F, F, K, K) -> U1
    palgLODE1      : (List F, F, K, K, SY) -> REC
    palgintegrate  : (F, K, K) -> IR
    palgext        : (F, K, K, F) -> U2
    palglim        : (F, K, K, List F) -> U3
    UPUP2F1        : (UPUP, RF, RF, K, K) -> F
    UPUP2F0        : (UPUP, K, K) -> F
    RF2UPUP        : (RF, UPUP) -> UPUP
    algaddx        : (IR, F) -> IR
    chvarIfCan     : (UPUP, RF, UP, RF) -> Union(UPUP, "failed")
    changeVarIfCan : (UPUP, RF, N) -> Union(CHV, "failed")
    rationalInt    : (UPUP, N, UP) -> IntegrationResult RF
    chv            : (UPUP, N, F, F) -> RF
    chv0           : (UPUP, N, F, F) -> F
    candidates     : UP -> List CND

    dummy := new()$SY
    dumk  := kernel(dummy)@K

    UPUP2F1(p, t, cf, kx, k) == UPUP2F0(eval(p, t, cf), kx, k)

    UPUP2F0(p, kx, k)        == multivariate(p, kx, k::F)

    chv(f, n, a, b)          == univariate(chv0(f, n, a, b), dumk)

    RF2UPUP(f, modulus) ==
      bc := extendedEuclidean(map((z1:F):RF+->z1::UP::RF, denom f), modulus,
                                      1)::Record(coef1:UPUP, coef2:UPUP)
      (map((x1:F):RF+->x1::UP::RF, numer f) * bc.coef1) rem modulus

    -- returns "failed", or (xx, c) such that f(x, y)dx = f(xx, y) c dy
    -- if p(x, y) = 0 is linear in x
    linearInXIfCan(x, y) ==
      a := b := 0$UP
      p := clearDenominator lift(minPoly y, x)
      while p ^= 0 repeat
        degree(q := numer leadingCoefficient p) > 1 => return "failed"
        a := a + monomial(coefficient(q, 1), d := degree p)
        b := b - monomial(coefficient(q, 0), d)
        p := reductum p
      xx:RF := b / a
      [xx(dumk::F), differentiate(xx, differentiate)]

    -- return Int(f(x,y)dx) where y is an n^th root of a rational function in x
    prootintegrate(f, x, y) ==
      modulus := lift(p := minPoly y, x)
      rf      := reductum(ff := univariate(f, x, y, p))
      ((r := retractIfCan(rf)@Union(RF,"failed")) case RF) and rf ^= 0 =>
            -- in this case, ff := lc(ff) y^i + r so we integrate both terms
            -- separately to gain time
            map(f1+->f1(x::F), integrate(r::RF)) +
                 prootintegrate1(leadingMonomial ff, x, y, modulus)
      prootintegrate1(ff, x, y, modulus)

    prootintegrate1(ff, x, y, modulus) ==
      chv:CHV
      r := radPoly(modulus)::Record(radicand:RF, deg:N)
      (uu := changeVarIfCan(ff, r.radicand, r.deg)) case CHV =>
        chv := uu::CHV
        newalg := nthRoot((chv.left)(dumk::F), chv.deg)
        kz := retract(numer newalg)@K
        newf := multivariate(chv.int, ku := dumk, newalg)
        vu := (chv.right)(x::F)
        vz := (chv.den)(x::F) * (y::F) * denom(newalg)::F
        map(x1+->eval(x1, [ku, kz], [vu, vz]), palgint(newf, ku, kz))
      cv     := chvar(ff, modulus)
      r      := radPoly(cv.poly)::Record(radicand:RF, deg:N)
      qprime := differentiate(q := retract(r.radicand)@UP)::RF
      not zero? qprime and
       ((u := chvarIfCan(cv.func, 1, q, inv qprime)) case UPUP) =>
         m := monomial(1, r.deg)$UPUP - q::RF::UPUP
         map(x1+->UPUP2F1(RF2UPUP(x1, m), cv.c1, cv.c2, x, y),
            rationalInt(u::UPUP, r.deg, monomial(1, 1)))
      curve  := RadicalFunctionField(F, UP, UPUP, q::RF, r.deg)
      algaddx(map(x1+->UPUP2F1(lift x1, cv.c1, cv.c2, x, y),
        palgintegrate(reduce(cv.func), differentiate$UP)$ALG)$IR2, x::F)

    -- Do the rationalizing change of variable
    -- Int(f(x, y) dx) --> Int(n u^(n-1) f((u^n - b)/a, u) / a du) where
    -- u^n = y^n = g(x) = a x + b
    -- returns the integral as an integral of a rational function in u
    rationalInt(f, n, g) ==
      not ((degree g) = 1) => error "rationalInt: radicand must be linear"
      a := leadingCoefficient g
      integrate(n * monomial(inv a, (n-1)::N)$UP
                  * chv(f, n, a, leadingCoefficient reductum g))

    -- Do the rationalizing change of variable 
    -- f(x,y) --> f((u^n - b)/a, u) where
    -- u = y = (a x + b)^(1/n).
    -- Returns f((u^n - b)/a,u) as an element of F
    chv0(f, n, a, b) ==
      d := dumk::F
      (f (d::UP::RF)) ((d ** n - b) / a)

    -- candidates(p) returns a list of pairs [g, u] such that p(x) = g(u(x)),
    -- those u's are candidates for change of variables
    -- currently uses a dumb heuristic where the candidates u's are p itself
    -- and all the powers x^2, x^3, ..., x^{deg(p)},
    -- will use polynomial decomposition in smarter days   MB 8/93
    candidates p ==
      l:List(CND) := empty()
      ground? p => l
      for i in 2..degree p repeat
        if (u := composite(p, xi := monomial(1, i))) case UP then
          l := concat([u::UP, xi], l)
      concat([monomial(1, 1), p], l)

    -- checks whether Int(p(x, y) dx) can be rewritten as
    -- Int(r(u, z) du) where u is some polynomial of x,
    -- z = d y for some polynomial d, and z^m = g(u)
    -- returns either [r(u, z), g, u, d, m] or "failed"
    -- we have y^n = radi
    changeVarIfCan(p, radi, n) ==
      rec := rootPoly(radi, n)
      for cnd in candidates(rec.radicand) repeat
        (u := chvarIfCan(p, rec.coef, cnd.right,
              inv(differentiate(cnd.right)::RF))) case UPUP =>
                 return [u::UPUP, cnd.left, cnd.right, rec.coef, rec.exponent]
      "failed"

    -- checks whether Int(p(x, y) dx) can be rewritten as
    -- Int(r(u, z) du) where u is some polynomial of x and z = d y
    -- we have y^n = a(x)/d(x)
    -- returns either "failed" or r(u, z)
    chvarIfCan(p, d, u, u1) ==
      ans:UPUP := 0
      while p ^= 0 repeat
        (v := composite(u1 * leadingCoefficient(p) / d ** degree(p), u))
          case "failed" => return "failed"
        ans := ans + monomial(v::RF, degree p)
        p   := reductum p
      ans

    algaddx(i, xx) ==
      elem? i => i
      mkAnswer(ratpart i, logpart i,
                [[- ne.integrand / (xx**2), xx] for ne in notelem i])

    prootRDE(nfp, f, g, x, k, rde) ==
      modulus := lift(p := minPoly k, x)
      r       := radPoly(modulus)::Record(radicand:RF, deg:N)
      rec     := rootPoly(r.radicand, r.deg)
      dqdx    := inv(differentiate(q := rec.radicand)::RF)
      ((uf := chvarIfCan(ff := univariate(f,x,k,p),rec.coef,q,1)) case UPUP) _
       and _
        ((ug:=chvarIfCan(gg:=univariate(g,x,k,p),rec.coef,q,dqdx))_
             case UPUP) =>
          (u := rde(chv0(uf::UPUP, rec.exponent, 1, 0), rec.exponent *
                    (dumk::F) ** (rec.exponent * (rec.exponent - 1))
                      * chv0(ug::UPUP, rec.exponent, 1, 0),
                       symbolIfCan(dumk)::SY)) case "failed" => "failed"
          eval(u::F, dumk, k::F)
      ((rec.coef) = 1) =>
        curve  := RadicalFunctionField(F, UP, UPUP, q::RF, rec.exponent)
        rc := algDsolve(D()$LDALG + reduce(univariate(nfp, x, k, p))::LDALG,
                         reduce univariate(g, x, k, p))$RDALG
        rc.particular case "failed" => "failed"
        UPUP2F0(lift((rc.particular)::curve), x, k)
      palgRDE1(nfp, g, x, k)

    prootlimint(f, x, k, lu) ==
      modulus := lift(p := minPoly k, x)
      r       := radPoly(modulus)::Record(radicand:RF, deg:N)
      rec     := rootPoly(r.radicand, r.deg)
      dqdx    := inv(differentiate(q := rec.radicand)::RF)
      (uf:=chvarIfCan(ff := univariate(f,x,k,p),rec.coef,q,dqdx)) case UPUP =>
        l := empty()$List(RF)
        n := rec.exponent * monomial(1, (rec.exponent - 1)::N)$UP
        for u in lu repeat
         if ((v:=chvarIfCan(uu:=univariate(u,x,k,p),rec.coef,q,dqdx))case UPUP)
            then l := concat(n * chv(v::UPUP,rec.exponent, 1, 0), l) else FAIL
        m := monomial(1, rec.exponent)$UPUP - q::RF::UPUP
        map(x1+->UPUP2F0(RF2UPUP(x1,m), x, k),
            limitedint(n * chv(uf::UPUP, rec.exponent, 1, 0), reverse_! l))
      cv     := chvar(ff, modulus)
      r      := radPoly(cv.poly)::Record(radicand:RF, deg:N)
      dqdx   := inv(differentiate(q := retract(r.radicand)@UP)::RF)
      curve  := RadicalFunctionField(F, UP, UPUP, q::RF, r.deg)
      (ui := palginfieldint(reduce(cv.func), differentiate$UP)$ALG)
        case "failed" => FAIL
      [UPUP2F1(lift(ui::curve), cv.c1, cv.c2, x, k), empty()]

    prootextint(f, x, k, g) ==
      modulus := lift(p := minPoly k, x)
      r       := radPoly(modulus)::Record(radicand:RF, deg:N)
      rec     := rootPoly(r.radicand, r.deg)
      dqdx    := inv(differentiate(q := rec.radicand)::RF)
      ((uf:=chvarIfCan(ff:=univariate(f,x,k,p),rec.coef,q,dqdx)) case UPUP) and
       ((ug:=chvarIfCan(gg:=univariate(g,x,k,p),rec.coef,q,dqdx)) case UPUP) =>
          m := monomial(1, rec.exponent)$UPUP - q::RF::UPUP
          n := rec.exponent * monomial(1, (rec.exponent - 1)::N)$UP
          map(x1+->UPUP2F0(RF2UPUP(x1,m), x, k),
              extendedint(n * chv(uf::UPUP, rec.exponent, 1, 0),
                          n * chv(ug::UPUP, rec.exponent, 1, 0)))
      cv     := chvar(ff, modulus)
      r      := radPoly(cv.poly)::Record(radicand:RF, deg:N)
      dqdx   := inv(differentiate(q := retract(r.radicand)@UP)::RF)
      curve  := RadicalFunctionField(F, UP, UPUP, q::RF, r.deg)
      (u := palginfieldint(reduce(cv.func), differentiate$UP)$ALG)
        case "failed" => FAIL
      [UPUP2F1(lift(u::curve), cv.c1, cv.c2, x, k), 0]

    palgRDE1(nfp, g, x, y) ==
      palgLODE1([nfp, 1], g, x, y, symbolIfCan(x)::SY).particular

    palgLODE1(eq, g, kx, y, x) ==
      modulus:= lift(p := minPoly y, kx)
      curve  := AlgebraicFunctionField(F, UP, UPUP, modulus)
      neq:LDALG := 0
      for f in eq for i in 0.. repeat
          neq := neq + monomial(reduce univariate(f, kx, y, p), i)
      empty? remove_!(y, remove_!(kx, varselect(kernels g, x))) =>
        rec := algDsolve(neq, reduce univariate(g, kx, y, p))$RDALG
        bas:List(F) := [UPUP2F0(lift h, kx, y) for h in rec.basis]
        rec.particular case "failed" => ["failed", bas]
        [UPUP2F0(lift((rec.particular)::curve), kx, y), bas]
      rec := algDsolve(neq, 0)
      ["failed", [UPUP2F0(lift h, kx, y) for h in rec.basis]]

    palgintegrate(f, x, k) ==
      modulus:= lift(p := minPoly k, x)
      cv     := chvar(univariate(f, x, k, p), modulus)
      curve  := AlgebraicFunctionField(F, UP, UPUP, cv.poly)
      knownInfBasis(cv.deg)
      algaddx(map(x1+->UPUP2F1(lift x1, cv.c1, cv.c2, x, k),
        palgintegrate(reduce(cv.func), differentiate$UP)$ALG)$IR2, x::F)

    palglim(f, x, k, lu) ==
      modulus:= lift(p := minPoly k, x)
      cv     := chvar(univariate(f, x, k, p), modulus)
      curve  := AlgebraicFunctionField(F, UP, UPUP, cv.poly)
      knownInfBasis(cv.deg)
      (u := palginfieldint(reduce(cv.func), differentiate$UP)$ALG)
        case "failed" => FAIL
      [UPUP2F1(lift(u::curve), cv.c1, cv.c2, x, k), empty()]

    palgext(f, x, k, g) ==
      modulus:= lift(p := minPoly k, x)
      cv     := chvar(univariate(f, x, k, p), modulus)
      curve  := AlgebraicFunctionField(F, UP, UPUP, cv.poly)
      knownInfBasis(cv.deg)
      (u := palginfieldint(reduce(cv.func), differentiate$UP)$ALG)
        case "failed" => FAIL
      [UPUP2F1(lift(u::curve), cv.c1, cv.c2, x, k), 0]

    palgint(f, x, y) ==
      (v := linearInXIfCan(x, y)) case "failed" =>
        (u := quadIfCan(x, y)) case "failed" =>
          is?(y, "nthRoot"::SY) => prootintegrate(f, x, y)
          is?(y,  "rootOf"::SY) => palgintegrate(f, x, y)
          FAIL
        palgint0(f, x, y, u.coef, u.poly)
      palgint0(f, x, y, dumk, v.xsub, v.dxsub)

    palgextint(f, x, y, g) ==
      (v := linearInXIfCan(x, y)) case "failed" =>
        (u := quadIfCan(x, y)) case "failed" =>
          is?(y, "nthRoot"::SY) => prootextint(f, x, y, g)
          is?(y,  "rootOf"::SY) => palgext(f, x, y, g)
          FAIL
        palgextint0(f, x, y, g, u.coef, u.poly)
      palgextint0(f, x, y, g, dumk, v.xsub, v.dxsub)

    palglimint(f, x, y, lu) ==
      (v := linearInXIfCan(x, y)) case "failed" =>
        (u := quadIfCan(x, y)) case "failed" =>
          is?(y, "nthRoot"::SY) => prootlimint(f, x, y, lu)
          is?(y,  "rootOf"::SY) => palglim(f, x, y, lu)
          FAIL
        palglimint0(f, x, y, lu, u.coef, u.poly)
      palglimint0(f, x, y, lu, dumk, v.xsub, v.dxsub)

    palgRDE(nfp, f, g, x, y, rde) ==
      (v := linearInXIfCan(x, y)) case "failed" =>
        (u := quadIfCan(x, y)) case "failed" =>
          is?(y, "nthRoot"::SY) => prootRDE(nfp, f, g, x, y, rde)
          palgRDE1(nfp, g, x, y)
        palgRDE0(f, g, x, y, rde, u.coef, u.poly)
      palgRDE0(f, g, x, y, rde, dumk, v.xsub, v.dxsub)

    -- returns "failed", or (d, P) such that (dy)**2 = P(x)
    -- and degree(P) = 2
    quadIfCan(x, y) ==
      (degree(p := minPoly y) = 2) and zero?(coefficient(p, 1)) =>
        d := denom(ff :=
                 univariate(- coefficient(p, 0) / coefficient(p, 2), x))
        degree(radi := d * numer ff) = 2 => [d(x::F), radi]
        "failed"
      "failed"

    if L has LinearOrdinaryDifferentialOperatorCategory F then

      palgLODE(eq, g, kx, y, x) ==
        (v := linearInXIfCan(kx, y)) case "failed" =>
          (u := quadIfCan(kx, y)) case "failed" =>
            palgLODE1([coefficient(eq, i) for i in 0..degree eq], g, kx, y, x)
          palgLODE0(eq, g, kx, y, u.coef, u.poly)
        palgLODE0(eq, g, kx, y, dumk, v.xsub, v.dxsub)