/usr/share/axiom-20170501/src/algebra/INTTR.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 | )abbrev package INTTR TranscendentalIntegration
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 24 October 1995
++ Description:
++ This package provides functions for the transcendental
++ case of the Risch algorithm.
-- Internally used by the integrator
TranscendentalIntegration(F, UP) : SIG == CODE where
F : Field
UP : UnivariatePolynomialCategory F
N ==> NonNegativeInteger
Z ==> Integer
Q ==> Fraction Z
GP ==> LaurentPolynomial(F, UP)
UP2 ==> SparseUnivariatePolynomial UP
RF ==> Fraction UP
UPR ==> SparseUnivariatePolynomial RF
IR ==> IntegrationResult RF
LOG ==> Record(scalar:Q, coeff:UPR, logand:UPR)
LLG ==> List Record(coeff:RF, logand:RF)
NE ==> Record(integrand:RF, intvar:RF)
NL ==> Record(mainpart:RF, limitedlogs:LLG)
UPF ==> Record(answer:UP, a0:F)
RFF ==> Record(answer:RF, a0:F)
IRF ==> Record(answer:IR, a0:F)
NLF ==> Record(answer:NL, a0:F)
GPF ==> Record(answer:GP, a0:F)
UPUP==> Record(elem:UP, notelem:UP)
GPGP==> Record(elem:GP, notelem:GP)
RFRF==> Record(elem:RF, notelem:RF)
FF ==> Record(ratpart:F, coeff:F)
FFR ==> Record(ratpart:RF, coeff:RF)
UF ==> Union(FF, "failed")
UF2 ==> Union(List F, "failed")
REC ==> Record(ir:IR, specpart:RF, polypart:UP)
PSOL==> Record(ans:F, right:F, sol?:Boolean)
FAIL==> error "Sorry - cannot handle that integrand yet"
SIG ==> with
primintegrate : (RF, UP -> UP, F -> UF) -> IRF
++ primintegrate(f, ', foo) returns \spad{[g, a]} such that
++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in UP.
++ Argument foo is an extended integration function on F.
expintegrate : (RF, UP -> UP, (Z, F) -> PSOL) -> IRF
++ expintegrate(f, ', foo) returns \spad{[g, a]} such that
++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in F;
++ Argument foo is a Risch differential equation solver on F;
tanintegrate : (RF, UP -> UP, (Z, F, F) -> UF2) -> IRF
++ tanintegrate(f, ', foo) returns \spad{[g, a]} such that
++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in F;
++ Argument foo is a Risch differential system solver on F;
primextendedint : (RF, UP -> UP, F->UF, RF) -> Union(RFF,FFR,"failed")
++ primextendedint(f, ', foo, g) returns either \spad{[v, c]} such that
++ \spad{f = v' + c g} and \spad{c' = 0}, or \spad{[v, a]} such that
++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in UP.
++ Returns "failed" if neither case can hold.
++ Argument foo is an extended integration function on F.
expextendedint : (RF,UP->UP,(Z,F)->PSOL, RF) -> Union(RFF,FFR,"failed")
++ expextendedint(f, ', foo, g) returns either \spad{[v, c]} such that
++ \spad{f = v' + c g} and \spad{c' = 0}, or \spad{[v, a]} such that
++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in F.
++ Returns "failed" if neither case can hold.
++ Argument foo is a Risch differential equation function on F.
primlimitedint : (RF, UP -> UP, F->UF, List RF) -> Union(NLF,"failed")
++ primlimitedint(f, ', foo, [u1,...,un]) returns
++ \spad{[v, [c1,...,cn], a]} such that \spad{ci' = 0},
++ \spad{f = v' + a + reduce(+,[ci * ui'/ui])},
++ and \spad{a = 0} or \spad{a} has no integral in UP.
++ Returns "failed" if no such v, ci, a exist.
++ Argument foo is an extended integration function on F.
explimitedint : (RF, UP->UP,(Z,F)->PSOL,List RF) -> Union(NLF,"failed")
++ explimitedint(f, ', foo, [u1,...,un]) returns
++ \spad{[v, [c1,...,cn], a]} such that \spad{ci' = 0},
++ \spad{f = v' + a + reduce(+,[ci * ui'/ui])},
++ and \spad{a = 0} or \spad{a} has no integral in F.
++ Returns "failed" if no such v, ci, a exist.
++ Argument foo is a Risch differential equation function on F.
primextintfrac : (RF, UP -> UP, RF) -> Union(FFR, "failed")
++ primextintfrac(f, ', g) returns \spad{[v, c]} such that
++ \spad{f = v' + c g} and \spad{c' = 0}.
++ Error: if \spad{degree numer f >= degree denom f} or
++ if \spad{degree numer g >= degree denom g} or
++ if \spad{denom g} is not squarefree.
primlimintfrac : (RF, UP -> UP, List RF) -> Union(NL, "failed")
++ primlimintfrac(f, ', [u1,...,un]) returns \spad{[v, [c1,...,cn]]}
++ such that \spad{ci' = 0} and \spad{f = v' + +/[ci * ui'/ui]}.
++ Error: if \spad{degree numer f >= degree denom f}.
primintfldpoly : (UP, F -> UF, F) -> Union(UP, "failed")
++ primintfldpoly(p, ', t') returns q such that \spad{p' = q} or
++ "failed" if no such q exists. Argument \spad{t'} is the derivative of
++ the primitive generating the extension.
expintfldpoly : (GP, (Z, F) -> PSOL) -> Union(GP, "failed")
++ expintfldpoly(p, foo) returns q such that \spad{p' = q} or
++ "failed" if no such q exists.
++ Argument foo is a Risch differential equation function on F.
monomialIntegrate : (RF, UP -> UP) -> REC
++ monomialIntegrate(f, ') returns \spad{[ir, s, p]} such that
++ \spad{f = ir' + s + p} and all the squarefree factors of the
++ denominator of s are special w.r.t the derivation '.
monomialIntPoly : (UP, UP -> UP) -> Record(answer:UP, polypart:UP)
++ monomialIntPoly(p, ') returns [q, r] such that
++ \spad{p = q' + r} and \spad{degree(r) < degree(t')}.
++ Error if \spad{degree(t') < 2}.
CODE ==> add
import SubResultantPackage(UP, UP2)
import MonomialExtensionTools(F, UP)
import TranscendentalHermiteIntegration(F, UP)
import CommuteUnivariatePolynomialCategory(F, UP, UP2)
primintegratepoly : (UP, F -> UF, F) -> Union(UPF, UPUP)
expintegratepoly : (GP, (Z, F) -> PSOL) -> Union(GPF, GPGP)
expextintfrac : (RF, UP -> UP, RF) -> Union(FFR, "failed")
explimintfrac : (RF, UP -> UP, List RF) -> Union(NL, "failed")
limitedLogs : (RF, RF -> RF, List RF) -> Union(LLG, "failed")
logprmderiv : (RF, UP -> UP) -> RF
logexpderiv : (RF, UP -> UP, F) -> RF
tanintegratespecial: (RF, RF -> RF, (Z, F, F) -> UF2) -> Union(RFF, RFRF)
UP2UP2 : UP -> UP2
UP2UPR : UP -> UPR
UP22UPR : UP2 -> UPR
notelementary : REC -> IR
kappa : (UP, UP -> UP) -> UP
dummy:RF := 0
logprmderiv(f, derivation) == differentiate(f, derivation) / f
UP2UP2 p ==
map(x+->x::UP, p)$UnivariatePolynomialCategoryFunctions2(F, UP, UP, UP2)
UP2UPR p ==
map(x+->x::UP::RF,p)$UnivariatePolynomialCategoryFunctions2(F,UP,RF,UPR)
UP22UPR p ==
map(x+->x::RF, p)$SparseUnivariatePolynomialFunctions2(UP, RF)
-- given p in k[z] and a derivation on k[t] returns the coefficient lifting
-- in k[z] of the restriction of D to k.
kappa(p, derivation) ==
ans:UP := 0
while p ^= 0 repeat
ans := ans + derivation(leadingCoefficient(p)::UP)*monomial(1,degree p)
p := reductum p
ans
-- works in any monomial extension
monomialIntegrate(f, derivation) ==
zero? f => [0, 0, 0]
r := HermiteIntegrate(f, derivation)
zero?(inum := numer(r.logpart)) => [r.answer::IR, r.specpart, r.polypart]
iden := denom(r.logpart)
x := monomial(1, 1)$UP
resultvec := subresultantVector(UP2UP2 inum -
(x::UP2) * UP2UP2 derivation iden, UP2UP2 iden)
respoly := primitivePart leadingCoefficient resultvec 0
rec := splitSquarefree(respoly, x1 +-> kappa(x1, derivation))
logs:List(LOG) := [
[1, UP2UPR(term.factor),
UP22UPR swap primitivePart(resultvec(term.exponent),term.factor)]
for term in factors(rec.special)]
dlog :=
((derivation x) = 1) => r.logpart
differentiate(mkAnswer(0, logs, empty()),
(x1:RF):RF +-> differentiate(x1, derivation))
(u := retractIfCan(p := r.logpart - dlog)@Union(UP, "failed")) case UP =>
[mkAnswer(r.answer, logs, empty), r.specpart, r.polypart + u::UP]
[mkAnswer(r.answer, logs, [[p, dummy]]), r.specpart, r.polypart]
-- returns [q, r] such that p = q' + r and degree(r) < degree(dt)
-- must have degree(derivation t) >= 2
monomialIntPoly(p, derivation) ==
(d := degree(dt := derivation monomial(1,1))::Z) < 2 =>
error "monomIntPoly: monomial must have degree 2 or more"
l := leadingCoefficient dt
ans:UP := 0
while (n := 1 + degree(p)::Z - d) > 0 repeat
ans := ans + (term := monomial(leadingCoefficient(p) / (n * l), n::N))
p := p - derivation term -- degree(p) must drop here
[ans, p]
-- returns either
-- (q in GP, a in F) st p = q' + a, and a=0 or a has no integral in F
-- or (q in GP, r in GP) st p = q' + r, and r has no integral elem/UP
expintegratepoly(p, FRDE) ==
coef0:F := 0
notelm := answr := 0$GP
while p ^= 0 repeat
ans1 := FRDE(n := degree p, a := leadingCoefficient p)
answr := answr + monomial(ans1.ans, n)
if ~ans1.sol? then -- Risch d.e. has no complete solution
missing := a - ans1.right
if zero? n then coef0 := missing
else notelm := notelm + monomial(missing, n)
p := reductum p
zero? notelm => [answr, coef0]
[answr, notelm]
-- f is either 0 or of the form p(t)/(1 + t**2)**n
-- returns either
-- (q in RF, a in F) st f = q' + a, and a=0 or a has no integral in F
-- or (q in RF, r in RF) st f = q' + r, and r has no integral elem/UP
tanintegratespecial(f, derivation, FRDE) ==
ans:RF := 0
p := monomial(1, 2)$UP + 1
while (n := degree(denom f) quo 2) ^= 0 repeat
r := numer(f) rem p
a := coefficient(r, 1)
b := coefficient(r, 0)
(u := FRDE(n, a, b)) case "failed" => return [ans, f]
l := u::List(F)
term:RF := (monomial(first l, 1)$UP + second(l)::UP) / denom f
ans := ans + term
f := f - derivation term -- the order of the pole at 1+t^2 drops
zero?(c0 := retract(retract(f)@UP)@F) or
(u := FRDE(0, c0, 0)) case "failed" => [ans, c0]
[ans + first(u::List(F))::UP::RF, 0::F]
-- returns (v in RF, c in RF) s.t. f = v' + cg, and c' = 0, or "failed"
-- g must have a squarefree denominator (always possible)
-- g must have no polynomial part and no pole above t = 0
-- f must have no polynomial part and no pole above t = 0
expextintfrac(f, derivation, g) ==
zero? f => [0, 0]
degree numer f >= degree denom f => error "Not a proper fraction"
order(denom f,monomial(1,1)) ^= 0 => error "Not integral at t = 0"
r := HermiteIntegrate(f, derivation)
zero? g =>
r.logpart ^= 0 => "failed"
[r.answer, 0]
degree numer g >= degree denom g => error "Not a proper fraction"
order(denom g,monomial(1,1)) ^= 0 => error "Not integral at t = 0"
differentiate(c := r.logpart / g, derivation) ^= 0 => "failed"
[r.answer, c]
limitedLogs(f, logderiv, lu) ==
zero? f => empty()
empty? lu => "failed"
empty? rest lu =>
logderiv(c0 := f / logderiv(u0 := first lu)) ^= 0 => "failed"
[[c0, u0]]
num := numer f
den := denom f
l1:List Record(logand2:RF, contrib:UP) :=
[[u, numer v] for u in lu | (denom(v := den * logderiv u) = 1)]
rows := max(degree den,
1 + reduce(max, [degree(u.contrib) for u in l1], 0)$List(N))
m:Matrix(F) := zero(rows, cols := 1 + #l1)
for i in 0..rows-1 repeat
for pp in l1 for j in minColIndex m .. maxColIndex m - 1 repeat
qsetelt_!(m, i + minRowIndex m, j, coefficient(pp.contrib, i))
qsetelt_!(m,i+minRowIndex m, maxColIndex m, coefficient(num, i))
m := rowEchelon m
ans := empty()$LLG
for i in minRowIndex m .. maxRowIndex m |
qelt(m, i, maxColIndex m) ^= 0 repeat
OK := false
for pp in l1 for j in minColIndex m .. maxColIndex m - 1
while not OK repeat
if qelt(m, i, j) ^= 0 then
OK := true
c := qelt(m, i, maxColIndex m) / qelt(m, i, j)
logderiv(c0 := c::UP::RF) ^= 0 => return "failed"
ans := concat([c0, pp.logand2], ans)
not OK => return "failed"
ans
-- returns q in UP s.t. p = q', or "failed"
primintfldpoly(p, extendedint, t') ==
(u := primintegratepoly(p, extendedint, t')) case UPUP => "failed"
u.a0 ^= 0 => "failed"
u.answer
-- returns q in GP st p = q', or "failed"
expintfldpoly(p, FRDE) ==
(u := expintegratepoly(p, FRDE)) case GPGP => "failed"
u.a0 ^= 0 => "failed"
u.answer
-- returns (v in RF, c1...cn in RF, a in F) s.t. ci' = 0,
-- and f = v' + a + +/[ci * ui'/ui]
-- and a = 0 or a has no integral in UP
primlimitedint(f, derivation, extendedint, lu) ==
qr := divide(numer f, denom f)
(u1 := primlimintfrac(qr.remainder / (denom f), derivation, lu))
case "failed" => "failed"
(u2 := primintegratepoly(qr.quotient, extendedint,
retract derivation monomial(1, 1))) case UPUP => "failed"
[[u1.mainpart + u2.answer::RF, u1.limitedlogs], u2.a0]
-- returns (v in RF, c1...cn in RF, a in F) s.t. ci' = 0,
-- and f = v' + a + +/[ci * ui'/ui]
-- and a = 0 or a has no integral in F
explimitedint(f, derivation, FRDE, lu) ==
qr := separate(f)$GP
(u1 := explimintfrac(qr.fracPart,derivation, lu)) case "failed" =>
"failed"
(u2 := expintegratepoly(qr.polyPart, FRDE)) case GPGP => "failed"
[[u1.mainpart + convert(u2.answer)@RF, u1.limitedlogs], u2.a0]
-- returns [v, c1...cn] s.t. f = v' + +/[ci * ui'/ui]
-- f must have no polynomial part (degree numer f < degree denom f)
primlimintfrac(f, derivation, lu) ==
zero? f => [0, empty()]
degree numer f >= degree denom f => error "Not a proper fraction"
r := HermiteIntegrate(f, derivation)
zero?(r.logpart) => [r.answer, empty()]
(u := limitedLogs(r.logpart, x1 +-> logprmderiv(x1, derivation), lu))
case "failed" => "failed"
[r.answer, u::LLG]
-- returns [v, c1...cn] s.t. f = v' + +/[ci * ui'/ui]
-- f must have no polynomial part (degree numer f < degree denom f)
-- f must be integral above t = 0
explimintfrac(f, derivation, lu) ==
zero? f => [0, empty()]
degree numer f >= degree denom f => error "Not a proper fraction"
order(denom f, monomial(1,1)) > 0 => error "Not integral at t = 0"
r := HermiteIntegrate(f, derivation)
zero?(r.logpart) => [r.answer, empty()]
eta' := coefficient(derivation monomial(1, 1), 1)
(u := limitedLogs(r.logpart, x1 +-> logexpderiv(x1,derivation,eta'), lu))
case "failed" => "failed"
[r.answer - eta'::UP *
+/[((degree numer(v.logand))::Z - (degree denom(v.logand))::Z) *
v.coeff for v in u], u::LLG]
logexpderiv(f, derivation, eta') ==
(differentiate(f, derivation) / f) -
(((degree numer f)::Z - (degree denom f)::Z) * eta')::UP::RF
notelementary rec ==
rec.ir + integral(rec.polypart::RF + rec.specpart, monomial(1,1)$UP:: RF)
-- returns
-- (g in IR, a in F) st f = g'+ a, and a=0 or a has no integral in UP
primintegrate(f, derivation, extendedint) ==
rec := monomialIntegrate(f, derivation)
not elem?(i1 := rec.ir) => [notelementary rec, 0]
(u2 := primintegratepoly(rec.polypart, extendedint,
retract derivation monomial(1, 1))) case UPUP =>
[i1 + u2.elem::RF::IR
+ integral(u2.notelem::RF, monomial(1,1)$UP :: RF), 0]
[i1 + u2.answer::RF::IR, u2.a0]
-- returns
-- (g in IR, a in F) st f = g' + a, and a = 0 or a has no integral in F
expintegrate(f, derivation, FRDE) ==
rec := monomialIntegrate(f, derivation)
not elem?(i1 := rec.ir) => [notelementary rec, 0]
-- rec.specpart is either 0 or of the form p(t)/t**n
special := rec.polypart::GP +
(numer(rec.specpart)::GP exquo denom(rec.specpart)::GP)::GP
(u2 := expintegratepoly(special, FRDE)) case GPGP =>
[i1 + convert(u2.elem)@RF::IR + integral(convert(u2.notelem)@RF,
monomial(1,1)$UP :: RF), 0]
[i1 + convert(u2.answer)@RF::IR, u2.a0]
-- returns
-- (g in IR, a in F) st f = g' + a, and a = 0 or a has no integral in F
tanintegrate(f, derivation, FRDE) ==
rec := monomialIntegrate(f, derivation)
not elem?(i1 := rec.ir) => [notelementary rec, 0]
r := monomialIntPoly(rec.polypart, derivation)
t := monomial(1, 1)$UP
c := coefficient(r.polypart, 1) / leadingCoefficient(derivation t)
derivation(c::UP) ^= 0 =>
[i1 + mkAnswer(r.answer::RF, empty(),
[[r.polypart::RF + rec.specpart, dummy]$NE]), 0]
logs:List(LOG) :=
zero? c => empty()
[[1, monomial(1,1)$UPR - (c/(2::F))::UP::RF::UPR, (1 + t**2)::RF::UPR]]
c0 := coefficient(r.polypart, 0)
(u := tanintegratespecial(rec.specpart, x+->differentiate(x, derivation),
FRDE)) case RFRF =>
[i1+mkAnswer(r.answer::RF + u.elem, logs, [[u.notelem,dummy]$NE]), c0]
[i1 + mkAnswer(r.answer::RF + u.answer, logs, empty()), u.a0 + c0]
-- returns either (v in RF, c in RF) s.t. f = v' + cg, and c' = 0
-- or (v in RF, a in F) s.t. f = v' + a
-- and a = 0 or a has no integral in UP
primextendedint(f, derivation, extendedint, g) ==
fqr := divide(numer f, denom f)
gqr := divide(numer g, denom g)
(u1 := primextintfrac(fqr.remainder / (denom f), derivation,
gqr.remainder / (denom g))) case "failed" => "failed"
zero?(gqr.remainder) =>
-- the following FAIL cannot occur if the primitives are all logs
degree(gqr.quotient) > 0 => FAIL
(u3 := primintegratepoly(fqr.quotient, extendedint,
retract derivation monomial(1, 1))) case UPUP => "failed"
[u1.ratpart + u3.answer::RF, u3.a0]
(u2 := primintfldpoly(fqr.quotient - retract(u1.coeff)@UP *
gqr.quotient, extendedint, retract derivation monomial(1, 1)))
case "failed" => "failed"
[u2::UP::RF + u1.ratpart, u1.coeff]
-- returns either (v in RF, c in RF) s.t. f = v' + cg, and c' = 0
-- or (v in RF, a in F) s.t. f = v' + a
-- and a = 0 or a has no integral in F
expextendedint(f, derivation, FRDE, g) ==
qf := separate(f)$GP
qg := separate g
(u1 := expextintfrac(qf.fracPart, derivation, qg.fracPart))
case "failed" => "failed"
zero?(qg.fracPart) =>
--the following FAIL's cannot occur if the primitives are all logs
retractIfCan(qg.polyPart)@Union(F,"failed") case "failed"=> FAIL
(u3 := expintegratepoly(qf.polyPart,FRDE)) case GPGP => "failed"
[u1.ratpart + convert(u3.answer)@RF, u3.a0]
(u2 := expintfldpoly(qf.polyPart - retract(u1.coeff)@UP :: GP
* qg.polyPart, FRDE)) case "failed" => "failed"
[convert(u2::GP)@RF + u1.ratpart, u1.coeff]
-- returns either
-- (q in UP, a in F) st p = q'+ a, and a=0 or a has no integral in UP
-- or (q in UP, r in UP) st p = q'+ r, and r has no integral elem/UP
primintegratepoly(p, extendedint, t') ==
zero? p => [0, 0$F]
ans:UP := 0
while (d := degree p) > 0 repeat
(ans1 := extendedint leadingCoefficient p) case "failed" =>
return([ans, p])
p := reductum p - monomial(d * t' * ans1.ratpart, (d - 1)::N)
ans := ans + monomial(ans1.ratpart, d)
+ monomial(ans1.coeff / (d + 1)::F, d + 1)
(ans1:= extendedint(rp := retract(p)@F)) case "failed" => [ans,rp]
[monomial(ans1.coeff, 1) + ans1.ratpart::UP + ans, 0$F]
-- returns (v in RF, c in RF) s.t. f = v' + cg, and c' = 0
-- g must have a squarefree denominator (always possible)
-- g must have no polynomial part (degree numer g < degree denom g)
-- f must have no polynomial part (degree numer f < degree denom f)
primextintfrac(f, derivation, g) ==
zero? f => [0, 0]
degree numer f >= degree denom f => error "Not a proper fraction"
r := HermiteIntegrate(f, derivation)
zero? g =>
r.logpart ^= 0 => "failed"
[r.answer, 0]
degree numer g >= degree denom g => error "Not a proper fraction"
differentiate(c := r.logpart / g, derivation) ^= 0 => "failed"
[r.answer, c]
|