This file is indexed.

/usr/share/axiom-20170501/src/algebra/IPADIC.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
)abbrev domain IPADIC InnerPAdicInteger
++ Author: Clifton J. Williamson
++ Date Created: 20 August 1989
++ Date Last Updated: 15 May 1990
++ Description:
++ This domain implements Zp, the p-adic completion of the integers.
++ This is an internal domain.

InnerPAdicInteger(p,unBalanced?) : SIG == CODE where
  p : Integer
  unBalanced? : Boolean

  I   ==> Integer
  NNI ==> NonNegativeInteger
  OUT ==> OutputForm
  L   ==> List
  ST  ==> Stream
  SUP ==> SparseUnivariatePolynomial

  SIG ==> PAdicIntegerCategory p

  CODE ==> add

    PEXPR := p :: OUT

    Rep := ST I

    characteristic() == 0
    euclideanSize(x) == order(x)

    stream(x:%):ST I == x pretend ST(I)
    padic(x:ST I):% == x pretend %
    digits x == stream x

    extend(x,n) == extend(x,n + 1)$Rep
    complete x == complete(x)$Rep

    modP:I -> I
    modP n ==
      unBalanced? or (p = 2) => positiveRemainder(n,p)
      symmetricRemainder(n,p)

    modPInfo:I -> Record(digit:I,carry:I)
    modPInfo n ==
      dv := divide(n,p)
      r0 := dv.remainder; q := dv.quotient
      if (r := modP r0) ^= r0 then q := q + ((r0 - r) quo p)
      [r,q]

    invModP: I -> I
    invModP n == invmod(n,p)

    modulus()     == p

    moduloP x     == (empty? x => 0; frst x)

    quotientByP x == (empty? x => x; rst x)

    approximate(x,n) ==
      n <= 0 or empty? x => 0
      frst x + p * approximate(rst x,n - 1)

    x = y ==
      st : ST I := stream(x - y)
      n : I := _$streamCount$Lisp
      for i in 0..n repeat
        empty? st => return true
        frst st ^= 0 => return false
        st := rst st
      empty? st

    order x ==
      st := stream x
      for i in 0..1000 repeat
        empty? st => return 0
        frst st ^= 0 => return i
        st := rst st
      error "order: series has more than 1000 leading zero coefs"

    0 == padic concat(0$I,empty())

    1 == padic concat(1$I,empty())

    intToPAdic: I -> ST I
    intToPAdic n == delay
      n = 0 => empty()
      modp := modPInfo n
      concat(modp.digit,intToPAdic modp.carry)

    intPlusPAdic: (I,ST I) -> ST I
    intPlusPAdic(n,x) == delay
      empty? x => intToPAdic n
      modp := modPInfo(n + frst x)
      concat(modp.digit,intPlusPAdic(modp.carry,rst x))

    intMinusPAdic: (I,ST I) -> ST I
    intMinusPAdic(n,x) == delay
      empty? x => intToPAdic n
      modp := modPInfo(n - frst x)
      concat(modp.digit,intMinusPAdic(modp.carry,rst x))

    plusAux: (I,ST I,ST I) -> ST I
    plusAux(n,x,y) == delay
      empty? x and empty? y => intToPAdic n
      empty? x => intPlusPAdic(n,y)
      empty? y => intPlusPAdic(n,x)
      modp := modPInfo(n + frst x + frst y)
      concat(modp.digit,plusAux(modp.carry,rst x,rst y))

    minusAux: (I,ST I,ST I) -> ST I
    minusAux(n,x,y) == delay
      empty? x and empty? y => intToPAdic n
      empty? x => intMinusPAdic(n,y)
      empty? y => intPlusPAdic(n,x)
      modp := modPInfo(n + frst x - frst y)
      concat(modp.digit,minusAux(modp.carry,rst x,rst y))

    x + y == padic plusAux(0,stream x,stream y)
    x - y == padic minusAux(0,stream x,stream y)
    - y   == padic intMinusPAdic(0,stream y)
    coerce(n:I) == padic intToPAdic n

    intMult:(I,ST I) -> ST I
    intMult(n,x) == delay
      empty? x => empty()
      modp := modPInfo(n * frst x)
      concat(modp.digit,intPlusPAdic(modp.carry,intMult(n,rst x)))

    (n:I) * (x:%) ==
      padic intMult(n,stream x)

    timesAux:(ST I,ST I) -> ST I
    timesAux(x,y) == delay
      empty? x or empty? y => empty()
      modp := modPInfo(frst x * frst y)
      car := modp.digit
      cdr : ST I --!!
      cdr := plusAux(modp.carry,intMult(frst x,rst y),timesAux(rst x,y))
      concat(car,cdr)

    (x:%) * (y:%) == padic timesAux(stream x,stream y)

    quotientAux:(ST I,ST I) -> ST I
    quotientAux(x,y) == delay
      empty? x => error "quotientAux: first argument"
      empty? y => empty()
      modP frst x = 0 =>
        modP frst y = 0 => quotientAux(rst x,rst y)
        error "quotient: quotient not integral"
      z0 := modP(invModP frst x * frst y)
      yy : ST I --!!
      yy := rest minusAux(0,y,intMult(z0,x))
      concat(z0,quotientAux(x,yy))

    recip x ==
      empty? x or modP frst x = 0 => "failed"
      padic quotientAux(stream x,concat(1,empty()))

    iExquo: (%,%,I) -> Union(%,"failed")
    iExquo(xx,yy,n) ==
      n > 1000 =>
        error "exquo: quotient by series with many leading zero coefs"
      empty? yy => "failed"
      empty? xx => 0
      zero? frst yy =>
        zero? frst xx => iExquo(rst xx,rst yy,n + 1)
        "failed"
      (rec := recip yy) case "failed" => "failed"
      xx * (rec :: %)

    x exquo y == iExquo(stream x,stream y,0)

    divide(x,y) ==
      (z:=x exquo y) case "failed" => [0,x]
      [z, 0]

    iSqrt: (I,I,I,%) -> %
    iSqrt(pn,an,bn,bSt) == delay
      bn1 := (empty? bSt => bn; bn + pn * frst(bSt))
      c := (bn1 - an*an) quo pn
      aa := modP(c * invmod(2*an,p))
      nSt := (empty? bSt => bSt; rst bSt)
      concat(aa,iSqrt(pn*p,an + pn*aa,bn1,nSt))

    sqrt(b,a) ==
      p = 2 =>
        error "sqrt: no square roots in Z2 yet"
      not zero? modP(a*a - (bb := moduloP b)) =>
        error "sqrt: not a square root (mod p)"
      b := (empty? b => b; rst b)
      a := modP a
      concat(a,iSqrt(p,a,bb,b))

    iRoot: (SUP I,I,I,I) -> ST I
    iRoot(f,alpha,invFpx0,pPow) == delay
      num := -((f(alpha) exquo pPow) :: I)
      digit := modP(num * invFpx0)
      concat(digit,iRoot(f,alpha + digit * pPow,invFpx0,p * pPow))

    root(f,x0) ==
      x0 := modP x0
      not zero? modP f(x0) =>
        error "root: not a root (mod p)"
      fpx0 := modP (differentiate f)(x0)
      zero? fpx0 =>
        error "root: approximate root must be a simple root (mod p)"
      invFpx0 := modP invModP fpx0
      padic concat(x0,iRoot(f,x0,invFpx0,p))

    termOutput:(I,I) -> OUT
    termOutput(k,c) ==
      k = 0 => c :: OUT
      mon := (k = 1 => PEXPR; PEXPR ** (k :: OUT))
      c = 1 => mon
      c = -1 => -mon
      (c :: OUT) * mon

    showAll?:() -> Boolean
    -- check a global Lisp variable
    showAll?() == true

    coerce(x:%):OUT ==
      empty?(st := stream x) => 0 :: OUT
      n : NNI ; count : NNI := _$streamCount$Lisp
      l : L OUT := empty()
      for n in 0..count while not empty? st repeat
        if frst(st) ^= 0 then
          l := concat(termOutput(n :: I,frst st),l)
        st := rst st
      if showAll?() then
        for n in (count + 1).. while explicitEntries? st and _
               not eq?(st,rst st) repeat
          if frst(st) ^= 0 then
            l := concat(termOutput(n pretend I,frst st),l)
          st := rst st
      l :=
        explicitlyEmpty? st => l
        eq?(st,rst st) and frst st = 0 => l
        concat(prefix("O" :: OUT,[PEXPR ** (n :: OUT)]),l)
      empty? l => 0 :: OUT
      reduce("+",reverse_! l)