/usr/share/axiom-20170501/src/algebra/IPF.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | )abbrev domain IPF InnerPrimeField
++ Authors: N.N., J.Grabmeier, A.Scheerhorn
++ Date Created: ?, November 1990, 26.03.1991
++ Date Last Updated: 12 April 1991
++ References:
++ Grab92 Finite Fields in Axiom
++ Lidl83 Finite Field, Encyclopedia of Mathematics and Its Applications
++ Description:
++ InnerPrimeField(p) implements the field with p elements.
++ Note: argument p MUST be a prime (this domain does not check).
++ See \spadtype{PrimeField} for a domain that does check.
InnerPrimeField(p) : SIG == CODE where
p : PositiveInteger
I ==> Integer
NNI ==> NonNegativeInteger
PI ==> PositiveInteger
TBL ==> Table(PI,NNI)
R ==> Record(key:PI,entry:NNI)
SUP ==> SparseUnivariatePolynomial
OUT ==> OutputForm
SIG ==> Join(FiniteFieldCategory,FiniteAlgebraicExtensionField($),_
ConvertibleTo(Integer))
CODE ==> IntegerMod p add
initializeElt:() -> Void
initializeLog:() -> Void
-- global variables ====================================================
primitiveElt:PI:=1
-- for the lookup the primitive Element
-- computed by createPrimitiveElement()
sizeCG :=(p-1) pretend NonNegativeInteger
-- the size of the cyclic group
facOfGroupSize := nil()$(List Record(factor:Integer,exponent:Integer))
-- the factorization of the cyclic group size
initlog?:Boolean:=true
-- gets false after initialization of the logarithm table
initelt?:Boolean:=true
-- gets false after initialization of the primitive Element
discLogTable:Table(PI,TBL):=table()$Table(PI,TBL)
-- tables indexed by the factors of the size q of the cyclic group
-- discLogTable.factor is a table of with keys
-- primitiveElement() ** (i * (q quo factor)) and entries i for
-- i in 0..n-1, n computed in initialize() in order to use
-- the minimal size limit 'limit' optimal.
-- functions ===========================================================
generator() == 1
-- This uses x**(p-1)=1 (mod p), so x**(q(p-1)+r) = x**r (mod p)
x:$ ** n:Integer ==
zero?(n) => 1
zero?(x) => 0
r := positiveRemainder(n,p-1)::NNI
((x pretend IntegerMod p) **$IntegerMod(p) r) pretend $
if p <= convert(max()$SingleInteger)@Integer then
q := p::SingleInteger
recip x ==
zero?(y := convert(x)@Integer :: SingleInteger) => "failed"
invmod(y, q)::Integer::$
else
recip x ==
zero?(y := convert(x)@Integer) => "failed"
invmod(y, p)::$
convert(x:$) == x pretend I
normalElement() == 1
createNormalElement() == 1
characteristic() == p
factorsOfCyclicGroupSize() ==
p=2 => facOfGroupSize -- this fixes an infinite loop of functions
-- calls, problem was that factors factor(1)
-- is the empty list
if empty? facOfGroupSize then initializeElt()
facOfGroupSize
representationType() == "prime"
tableForDiscreteLogarithm(fac) ==
if initlog? then initializeLog()
tbl:=search(fac::PI,discLogTable)$Table(PI,TBL)
tbl case "failed" =>
error "tableForDiscreteLogarithm: argument must be prime divisor_
of the order of the multiplicative group"
tbl pretend TBL
primitiveElement() ==
if initelt? then initializeElt()
index(primitiveElt)
initializeElt() ==
facOfGroupSize:=factors(factor(sizeCG)$I)$(Factored I)
-- get a primitive element
primitiveElt:=lookup(createPrimitiveElement())
-- set initialization flag
initelt? := false
void$Void
initializeLog() ==
if initelt? then initializeElt()
-- set up tables for discrete logarithm
limit:Integer:=30
-- the minimum size for the discrete logarithm table
for f in facOfGroupSize repeat
fac:=f.factor
base:$:=primitiveElement() ** (sizeCG quo fac)
l:Integer:=length(fac)$Integer
n:Integer:=0
if odd?(l)$Integer then n:=shift(fac,-(l quo 2))
else n:=shift(1,(l quo 2))
if n < limit then
d:=(fac-1) quo limit + 1
n:=(fac-1) quo d + 1
tbl:TBL:=table()$TBL
a:$:=1
for i in (0::NNI)..(n-1)::NNI repeat
insert_!([lookup(a),i::NNI]$R,tbl)$TBL
a:=a*base
insert_!([fac::PI,copy(tbl)$TBL]_
$Record(key:PI,entry:TBL),discLogTable)$Table(PI,TBL)
-- tell user about initialization
-- print("discrete logarithm table initialized"::OUT)
-- set initialization flag
initlog? := false
void$Void
degree(x):PI == 1::PositiveInteger
extensionDegree():PI == 1::PositiveInteger
inGroundField?(x) == true
coordinates(x) == new(1,x)$(Vector $)
represents(v) == v.1
retract(x) == x
retractIfCan(x) == x
basis() == new(1,1::$)$(Vector $)
basis(n:PI) ==
n = 1 => basis()
error("basis: argument must divide extension degree")
definingPolynomial() ==
monomial(1,1)$(SUP $) - monomial(1,0)$(SUP $)
minimalPolynomial(x) ==
monomial(1,1)$(SUP $) - monomial(x,0)$(SUP $)
charthRoot x == x
|