This file is indexed.

/usr/share/axiom-20170501/src/algebra/IR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
)abbrev domain IR IntegrationResult
++ Author: Barry Trager, Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 12 August 1992
++ Description:
++ The result of a transcendental integration.
++ If a function f has an elementary integral g, then g can be written
++ in the form \spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)}
++ where h, which is in the same field than f, is called the rational
++ part of the integral, and \spad{c1 log(u1) + ... cn log(un)} is called the
++ logarithmic part of the integral. This domain manipulates integrals
++ represented in that form, by keeping both parts separately. The logs
++ are not explicitly computed.

IntegrationResult(F) : SIG == CODE where
  F : Field

  O   ==> OutputForm
  B   ==> Boolean
  Z   ==> Integer
  Q   ==> Fraction Integer
  SE  ==> Symbol
  UP  ==> SparseUnivariatePolynomial F
  LOG ==> Record(scalar:Q, coeff:UP, logand:UP)
  NE  ==> Record(integrand:F, intvar:F)

  SIG ==> (Module Q, RetractableTo F) with

    mkAnswer : (F, List LOG, List NE) -> %
      ++ mkAnswer(r,l,ne) creates an integration result from
      ++ a rational part r, a logarithmic part l, and a non-elementary part ne.

    ratpart : % -> F
      ++ ratpart(ir) returns the rational part of an integration result

    logpart : % -> List LOG
      ++ logpart(ir) returns the logarithmic part of an integration result

    notelem : % -> List NE
      ++ notelem(ir) returns the non-elementary part of an integration result

    elem? : % -> B
      ++ elem?(ir) tests if an integration result is elementary over F?

    integral : (F, F) -> %
      ++ integral(f,x) returns the formal integral of f with respect to x

    differentiate : (%, F -> F) -> F
      ++ differentiate(ir,D) differentiates ir with respect to the derivation D

    if F has PartialDifferentialRing(SE) then

      differentiate : (%, Symbol) -> F
        ++ differentiate(ir,x) differentiates ir with respect to x

    if F has RetractableTo Symbol then

      integral : (F, Symbol) -> %
        ++ integral(f,x) returns the formal integral of f with respect to x

  CODE ==> add

    Rep := Record(ratp: F, logp: List LOG, nelem: List NE)

    timelog : (Q, LOG) -> LOG
    timene  : (Q, NE)  -> NE
    LOG2O   : LOG      -> O
    NE2O    : NE       -> O
    Q2F     : Q        -> F
    nesimp  : List NE  -> List NE
    neselect: (List NE, F) -> F
    pLogDeriv: (LOG, F -> F) -> F
    pNeDeriv : (NE,  F -> F) -> F

    alpha:O := new()$Symbol :: O

    - u               == (-1$Z) * u

    0                 == mkAnswer(0, empty(), empty())

    coerce(x:F):%     == mkAnswer(x, empty(), empty())

    ratpart u         == u.ratp

    logpart u         == u.logp

    notelem u         == u.nelem

    elem? u           == empty? notelem u

    mkAnswer(x, l, n) == [x, l, nesimp n]

    timelog(r, lg)    == [r * lg.scalar, lg.coeff, lg.logand]

    integral(f:F,x:F) == (zero? f => 0; mkAnswer(0, empty(), [[f, x]]))

    timene(r, ne)     == [Q2F(r) * ne.integrand, ne.intvar]

    n:Z * u:%         == (n::Q) * u

    Q2F r             == numer(r)::F / denom(r)::F

    neselect(l, x)    == _+/[ne.integrand for ne in l | ne.intvar = x]

    if F has RetractableTo Symbol then
      integral(f:F, x:Symbol):% == integral(f, x::F)

    LOG2O rec ==
      (degree rec.coeff) = 1 =>
        -- deg 1 minimal poly doesn't get sigma
        lastc := - coefficient(rec.coeff, 0) / coefficient(rec.coeff, 1)
        lg    := (rec.logand) lastc
        logandp := prefix("log"::Symbol::O, [lg::O])
        (cc := Q2F(rec.scalar) * lastc) = 1 => logandp
        cc = -1 => - logandp
        cc::O * logandp
      coeffp:O := (outputForm(rec.coeff, alpha) = 0::Z::O)@O
      logandp :=
           alpha * prefix("log"::Symbol::O, [outputForm(rec.logand, alpha)])
      if (cc := Q2F(rec.scalar)) ^= 1 then
        logandp := cc::O * logandp
      sum(logandp, coeffp)

    nesimp l ==
      [[u,x] for x in removeDuplicates_!([ne.intvar for ne in l]$List(F))
                                           | (u := neselect(l, x)) ^= 0]

    if (F has LiouvillianFunctionCategory) _
     and (F has RetractableTo Symbol) then

      retractIfCan u ==
        empty? logpart u =>
          ratpart u +
             _+/[integral(ne.integrand, retract(ne.intvar)@Symbol)$F
                for ne in notelem u]
        "failed"

    else

      retractIfCan u ==
        elem? u and empty? logpart u => ratpart u
        "failed"

    r:Q * u:% ==
      r = 0 => 0
      mkAnswer(Q2F(r) * ratpart u, map(x1+->timelog(r, x1), logpart u),
                                       map(x2+->timene(r, x2), notelem u))

    -- Initial attempt, quick and dirty, no simplification
    u + v ==
      mkAnswer(ratpart u + ratpart v, concat(logpart u, logpart v),
                                    nesimp concat(notelem u, notelem v))

    if F has PartialDifferentialRing(Symbol) then
      differentiate(u:%, x:Symbol):F == 
        differentiate(u, x1+->differentiate(x1, x))

    differentiate(u:%, derivation:F -> F):F ==
      derivation ratpart u +
          _+/[pLogDeriv(log, derivation) for log in logpart u]
               + _+/[pNeDeriv(ne, derivation) for ne in notelem u]

    pNeDeriv(ne, derivation) ==
      (derivation(ne.intvar) = 1) => ne.integrand
      zero? derivation(ne.integrand) => 0
      error "pNeDeriv: cannot differentiate not elementary part into F"

    pLogDeriv(log, derivation) ==
      map(derivation, log.coeff) ^= 0 =>
        error "pLogDeriv: can only handle logs with constant coefficients"
      ((n := degree(log.coeff)) = 1) =>
        c   := - (leadingCoefficient reductum log.coeff)
                                        / (leadingCoefficient log.coeff)
        ans := (log.logand) c
        Q2F(log.scalar) * c * derivation(ans) / ans
      numlog := map(derivation, log.logand)
      diflog := extendedEuclidean(log.logand, log.coeff,
                                    numlog)::Record(coef1:UP, coef2:UP)
      algans := diflog.coef1
      ans:F := 0
      for i in 0..(n-1) repeat
        algans := algans * monomial(1, 1) rem log.coeff
        ans := ans + coefficient(algans, i)
      Q2F(log.scalar) * ans

    coerce(u:%):O ==
      (r := retractIfCan u) case F => r::F::O
      l := reverse_! [LOG2O f for f in logpart u]$List(O)
      if ratpart u ^= 0 then l := concat(ratpart(u)::O, l)
      if not elem? u then l := concat([NE2O f for f in notelem u], l)
      null l => 0::O
      reduce("+", l)

    NE2O ne ==
      int((ne.integrand)::O * hconcat ["d"::Symbol::O, (ne.intvar)::O])