/usr/share/axiom-20170501/src/algebra/IR2F.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 | )abbrev package IR2F IntegrationResultToFunction
++ Author: Manuel Bronstein
++ Date Created: 4 February 1988
++ Date Last Updated: 9 October 1991
++ Description:
++ Conversion of integration results to top-level expressions
++ This package allows a sum of logs over the roots of a polynomial
++ to be expressed as explicit logarithms and arc tangents, provided
++ that the indexing polynomial can be factored into quadratics.
IntegrationResultToFunction(R, F) : SIG == CODE where
R: Join(GcdDomain, RetractableTo Integer, OrderedSet,
LinearlyExplicitRingOver Integer)
F: Join(AlgebraicallyClosedFunctionSpace R,
TranscendentalFunctionCategory)
N ==> NonNegativeInteger
Z ==> Integer
Q ==> Fraction Z
K ==> Kernel F
P ==> SparseMultivariatePolynomial(R, K)
UP ==> SparseUnivariatePolynomial F
IR ==> IntegrationResult F
REC ==> Record(ans1:F, ans2:F)
LOG ==> Record(scalar:Q, coeff:UP, logand:UP)
SIG ==> with
split : IR -> IR
++ split(u(x) + sum_{P(a)=0} Q(a,x)) returns
++ \spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)}
++ where P1,...,Pn are the factors of P.
expand : IR -> List F
++ expand(i) returns the list of possible real functions
++ corresponding to i.
complexExpand : IR -> F
++ complexExpand(i) returns the expanded complex function
++ corresponding to i.
CODE ==> add
import AlgebraicManipulations(R, F)
import ElementaryFunctionSign(R, F)
IR2F : IR -> F
insqrt : F -> Record(sqrt:REC, sgn:Z)
pairsum : (List F, List F) -> List F
pairprod : (F, List F) -> List F
quadeval : (UP, F, F, F) -> REC
linear : (UP, UP) -> F
tantrick : (F, F) -> F
ilog : (F, F, List K) -> F
ilog0 : (F, F, UP, UP, F) -> F
nlogs : LOG -> List LOG
lg2func : LOG -> List F
quadratic : (UP, UP) -> List F
mkRealFunc : List LOG -> List F
lg2cfunc : LOG -> F
loglist : (Q, UP, UP) -> List LOG
cmplex : (F, UP) -> F
evenRoots : F -> List F
compatible?: (List F, List F) -> Boolean
cmplex(alpha, p) == alpha * log p alpha
IR2F i == retract mkAnswer(ratpart i, empty(), notelem i)
pairprod(x, l) == [x * y for y in l]
evenRoots x ==
[first argument k for k in tower x |
is?(k,"nthRoot"::Symbol) and even?(retract(second argument k)@Z)
and (not empty? variables first argument k)]
expand i ==
j := split i
pairsum([IR2F j], mkRealFunc logpart j)
split i ==
mkAnswer(ratpart i,concat [nlogs l for l in logpart i],notelem i)
complexExpand i ==
j := split i
IR2F j + +/[lg.scalar::F * lg2cfunc lg for lg in logpart j]
-- p = a t^2 + b t + c
-- Expands sum_{p(t) = 0} t log(lg(t))
quadratic(p, lg) ==
zero?(delta := (b := coefficient(p, 1))**2 - 4 *
(a := coefficient(p,2)) * (p0 := coefficient(p, 0))) =>
[linear(monomial(1, 1) + (b / a)::UP, lg)]
e := (q := quadeval(lg, c := - b * (d := inv(2*a)),d, delta)).ans1
lgp := c * log(nrm := (e**2 - delta * (f := q.ans2)**2))
s := (sqr := insqrt delta).sqrt
pp := nn := 0$F
if sqr.sgn >= 0 then
sqrp := s.ans1 * rootSimp sqrt(s.ans2)
pp := lgp + d * sqrp * log(((2 * e * f) / nrm) * sqrp
+ (e**2 + delta * f**2) / nrm)
if sqr.sgn <= 0 then
sqrn := s.ans1 * rootSimp sqrt(-s.ans2)
nn := lgp + d * sqrn * ilog(e, f * sqrn,
setUnion(setUnion(kernels a, kernels b), kernels p0))
sqr.sgn > 0 => [pp]
sqr.sgn < 0 => [nn]
[pp, nn]
-- returns 2 atan(a/b) or 2 atan(-b/a) whichever looks better
-- they differ by a constant so it's ok to do it from an IR
tantrick(a, b) ==
retractIfCan(a)@Union(Q, "failed") case Q => 2 * atan(-b/a)
2 * atan(a/b)
-- transforms i log((a + i b) / (a - i b)) into a sum of real
-- arc-tangents using Rioboo's algorithm
-- lk is a list of kernels which are parameters for the integral
ilog(a, b, lk) ==
l := setDifference(setUnion(variables numer a, variables numer b),
setUnion(lk, setUnion(variables denom a, variables denom b)))
empty? l => tantrick(a, b)
k := "max"/l
ilog0(a, b, numer univariate(a, k), numer univariate(b, k), k::F)
-- transforms i log((a + i b) / (a - i b)) into a sum of real
-- arc-tangents using Rioboo's algorithm
-- the arc-tangents will not have k in the denominator
-- we always keep upa(k) = a and upb(k) = b
ilog0(a, b, upa, upb, k) ==
if degree(upa) < degree(upb) then
(upa, upb) := (-upb, upa)
(a, b) := (-b, a)
zero? degree upb => tantrick(a, b)
r := extendedEuclidean(upa, upb)
(g:= retractIfCan(r.generator)@Union(F,"failed")) case "failed" =>
tantrick(a, b)
if degree(r.coef1) >= degree upb then
qr := divide(r.coef1, upb)
r.coef1 := qr.remainder
r.coef2 := r.coef2 + qr.quotient * upa
aa := (r.coef2) k
bb := -(r.coef1) k
tantrick(aa * a + bb * b, g::F) + ilog0(aa,bb,r.coef2,-r.coef1,k)
lg2func lg ==
zero?(d := degree(p := lg.coeff)) => error "poly has degree 0"
(d = 1) => [linear(p, lg.logand)]
d = 2 => quadratic(p, lg.logand)
odd? d and
((r := retractIfCan(reductum p)@Union(F, "failed")) case F) =>
pairsum([cmplex(alpha := rootSimp zeroOf p, lg.logand)],
lg2func [lg.scalar,
(p exquo (monomial(1, 1)$UP - alpha::UP))::UP,
lg.logand])
[lg2cfunc lg]
lg2cfunc lg ==
+/[cmplex(alpha, lg.logand) for alpha in zerosOf(lg.coeff)]
mkRealFunc l ==
ans := empty()$List(F)
for lg in l repeat
ans := pairsum(ans, pairprod(lg.scalar::F, lg2func lg))
ans
-- returns a log(b)
linear(p, lg) ==
alpha := - coefficient(p, 0) / coefficient(p, 1)
alpha * log lg alpha
-- returns (c, d) s.t. p(a + b t) = c + d t, where t^2 = delta
quadeval(p, a, b, delta) ==
zero? p => [0, 0]
bi := c := d := 0$F
ai := 1$F
v := vectorise(p, 1 + degree p)
for i in minIndex v .. maxIndex v repeat
c := c + qelt(v, i) * ai
d := d + qelt(v, i) * bi
temp := a * ai + b * bi * delta
bi := a * bi + b * ai
ai := temp
[c, d]
compatible?(lx, ly) ==
empty? ly => true
for x in lx repeat
for y in ly repeat
((s := sign(x*y)) case Z) and (s::Z < 0) => return false
true
pairsum(lx, ly) ==
empty? lx => ly
empty? ly => lx
l := empty()$List(F)
for x in lx repeat
ls := evenRoots x
if not empty?(ln :=
[x + y for y in ly | compatible?(ls, evenRoots y)]) then
l := removeDuplicates concat(l, ln)
l
-- returns [[a, b], s] where sqrt(y) = a sqrt(b) and
-- s = 1 if b > 0, -1 if b < 0, 0 if the sign of b cannot be determined
insqrt y ==
rec := froot(y, 2)$PolynomialRoots(IndexedExponents K, K, R, P, F)
((rec.exponent) = 1) => [[rec.coef * rec.radicand, 1], 1]
rec.exponent ^=2 => error "Should not happen"
[[rec.coef, rec.radicand],
((s := sign(rec.radicand)) case "failed" => 0; s::Z)]
nlogs lg ==
[[f.exponent * lg.scalar, f.factor, lg.logand] for f in factors
ffactor(primitivePart(lg.coeff)
)$FunctionSpaceUnivariatePolynomialFactor(R, F, UP)]
|