This file is indexed.

/usr/share/axiom-20170501/src/algebra/IRRF2F.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
)abbrev package IRRF2F IntegrationResultRFToFunction
++ Author: Manuel Bronstein
++ Date Created: 21 August 1988
++ Date Last Updated: 4 October 1993
++ Description:
++ Conversion of integration results to top-level expressions.
++ This package allows a sum of logs over the roots of a polynomial
++ to be expressed as explicit logarithms and arc tangents, provided
++ that the indexing polynomial can be factored into quadratics.

IntegrationResultRFToFunction(R) : SIG == CODE where
  R: Join(GcdDomain, RetractableTo Integer, OrderedSet,
           LinearlyExplicitRingOver Integer)

  RF  ==> Fraction Polynomial R
  F   ==> Expression R
  IR  ==> IntegrationResult RF

  SIG ==> with

    split : IR -> IR
       ++ split(u(x) + sum_{P(a)=0} Q(a,x)) returns
       ++ \spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)}
       ++ where P1,...,Pn are the factors of P.

    expand : IR -> List F
       ++ expand(i) returns the list of possible real functions
       ++ corresponding to i.

    complexExpand : IR -> F
       ++ complexExpand(i) returns the expanded complex function
       ++ corresponding to i.

    if R has CharacteristicZero then

      integrate : (RF, Symbol) -> Union(F, List F)
        ++ integrate(f, x) returns the integral of \spad{f(x)dx}
        ++ where x is viewed as a real variable..

      complexIntegrate : (RF, Symbol) -> F
        ++ complexIntegrate(f, x) returns the integral of \spad{f(x)dx}
        ++ where x is viewed as a complex variable.

  CODE ==> add

    import IntegrationTools(R, F)
    import TrigonometricManipulations(R, F)
    import IntegrationResultToFunction(R, F)

    toEF: IR -> IntegrationResult F

    toEF i          == map(z1+->z1::F, i)$IntegrationResultFunctions2(RF, F)

    expand i        == expand toEF i

    complexExpand i == complexExpand toEF i

    split i ==
      map(retract, split toEF i)$IntegrationResultFunctions2(F, RF)

    if R has CharacteristicZero then

      import RationalFunctionIntegration(R)

      complexIntegrate(f, x) == complexExpand internalIntegrate(f, x)

      -- do not use real integration if R is complex
      if R has imaginary: () -> R then 

        integrate(f, x) == complexIntegrate(f, x)

      else

        integrate(f, x) ==
          l := [mkPrim(real g, x) for g in expand internalIntegrate(f, x)]
          empty? rest l => first l
          l