This file is indexed.

/usr/share/axiom-20170501/src/algebra/KDAGG.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
)abbrev category KDAGG KeyedDictionary
++ Author: Michael Monagan; revised by Manuel Bronstein and Richard Jenks
++ Date Created: August 87 through August 88
++ Date Last Updated: April 1991
++ Description:
++ A keyed dictionary is a dictionary of key-entry pairs for which there is
++ a unique entry for each key.

KeyedDictionary(Key, Entry) : Category == SIG where
  Key : SetCategory
  Entry : SetCategory

  SIG ==> Dictionary Record(key:Key,entry:Entry) with

    key? : (Key, %) -> Boolean
      ++ key?(k,t) tests if k is a key in table t.

    keys : % -> List Key
      ++ keys(t) returns the list the keys in table t.

    remove_! : (Key, %) -> Union(Entry,"failed")
      ++ remove!(k,t) searches the table t for the key k removing
      ++ (and return) the entry if there.
      ++ If t has no such key, \axiom{remove!(k,t)} returns "failed".

    search : (Key, %) -> Union(Entry,"failed")
      ++ search(k,t) searches the table t for the key k,
      ++ returning the entry stored in t for key k.
      ++ If t has no such key, \axiom{search(k,t)} returns "failed".

   add

     key?(k, t) == search(k, t) case Entry

     member?(p, t) ==
       r := search(p.key, t)
       r case Entry and r::Entry = p.entry

     if % has finiteAggregate then

       keys t == [x.key for x in parts t]