/usr/share/axiom-20170501/src/algebra/LAPLACE.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | )abbrev package LAPLACE LaplaceTransform
++ Author: Manuel Bronstein
++ Date Created: 30 May 1990
++ Date Last Updated: 13 December 1995
++ Description:
++ This package computes the forward Laplace Transform.
LaplaceTransform(R, F) : SIG == CODE where
R : Join(EuclideanDomain, OrderedSet, CharacteristicZero,
RetractableTo Integer, LinearlyExplicitRingOver Integer)
F : Join(TranscendentalFunctionCategory, PrimitiveFunctionCategory,
AlgebraicallyClosedFunctionSpace R)
SE ==> Symbol
PI ==> PositiveInteger
N ==> NonNegativeInteger
K ==> Kernel F
OFE ==> OrderedCompletion F
EQ ==> Equation OFE
ALGOP ==> "%alg"
SPECIALDIFF ==> "%specialDiff"
SIG ==> with
laplace : (F, SE, SE) -> F
++ laplace(f, t, s) returns the Laplace transform of \spad{f(t)}
++ using \spad{s} as the new variable.
++ This is \spad{integral(exp(-s*t)*f(t), t = 0..%plusInfinity)}.
++ Returns the formal object \spad{laplace(f, t, s)} if it cannot
++ compute the transform.
CODE ==> add
import IntegrationTools(R, F)
import ElementaryIntegration(R, F)
import PatternMatchIntegration(R, F)
import PowerSeriesLimitPackage(R, F)
import FunctionSpaceIntegration(R, F)
import TrigonometricManipulations(R, F)
locallaplace : (F, SE, F, SE, F) -> F
lapkernel : (F, SE, F, F) -> Union(F, "failed")
intlaplace : (F, F, F, SE, F) -> Union(F, "failed")
isLinear : (F, SE) -> Union(Record(const:F, nconst:F), "failed")
mkPlus : F -> Union(List F, "failed")
dvlap : (List F, SE) -> F
tdenom : (F, F) -> Union(F, "failed")
atn : (F, SE) -> Union(Record(coef:F, deg:PI), "failed")
aexp : (F, SE) -> Union(Record(coef:F, coef1:F, coef0:F), "failed")
algebraic? : (F, SE) -> Boolean
oplap := operator("laplace"::Symbol, 3)$BasicOperator
laplace(f,t,s) == locallaplace(complexElementary(f,t),t,t::F,s,s::F)
-- returns true if the highest kernel of f is algebraic over something
algebraic?(f, t) ==
l := varselect(kernels f, t)
m:N := reduce(max, [height k for k in l], 0)$List(N)
for k in l repeat
height k = m and has?(operator k, ALGOP) => return true
false
-- differentiate a kernel of the form laplace(l.1,l.2,l.3) w.r.t x.
-- note that x is not necessarily l.3
-- if x = l.3, then there is no use recomputing the laplace transform,
-- it will remain formal anyways
dvlap(l, x) ==
l1 := first l
l2 := second l
x = (v := retract(l3 := third l)@SE) => - oplap(l2 * l1, l2, l3)
e := exp(- l3 * l2)
locallaplace(differentiate(e * l1, x) / e, retract(l2)@SE, l2, v, l3)
-- returns [b, c] iff f = c * t + b
-- and b and c do not involve t
isLinear(f, t) ==
ff := univariate(f, kernel(t)@K)
((d := retractIfCan(denom ff)@Union(F, "failed")) case "failed")
or (degree(numer ff) > 1) => "failed"
freeOf?(b := coefficient(numer ff, 0) / d, t) and
freeOf?(c := coefficient(numer ff, 1) / d, t) => [b, c]
"failed"
-- returns [a, n] iff f = a * t**n
atn(f, t) ==
if ((v := isExpt f) case Record(var:K, exponent:Integer)) then
w := v::Record(var:K, exponent:Integer)
(w.exponent > 0) and
((vv := symbolIfCan(w.var)) case SE) and (vv::SE = t) =>
return [1, w.exponent::PI]
(u := isTimes f) case List(F) =>
c:F := 1
d:N := 0
for g in u::List(F) repeat
if (rec := atn(g, t)) case Record(coef:F, deg:PI) then
r := rec::Record(coef:F, deg:PI)
c := c * r.coef
d := d + r.deg
else c := c * g
zero? d => "failed"
[c, d::PI]
"failed"
-- returns [a, c, b] iff f = a * exp(c * t + b)
-- and b and c do not involve t
aexp(f, t) ==
is?(f, "exp"::SE) =>
(v := isLinear(first argument(retract(f)@K),t)) case "failed" =>
"failed"
[1, v.nconst, v.const]
(u := isTimes f) case List(F) =>
c:F := 1
c1 := c0 := 0$F
for g in u::List(F) repeat
if (r := aexp(g,t)) case Record(coef:F,coef1:F,coef0:F) then
rec := r::Record(coef:F, coef1:F, coef0:F)
c := c * rec.coef
c0 := c0 + rec.coef0
c1 := c1 + rec.coef1
else c := c * g
zero? c0 and zero? c1 => "failed"
[c, c1, c0]
if (v := isPower f) case Record(val:F, exponent:Integer) then
w := v::Record(val:F, exponent:Integer)
(w.exponent ^= 1) and
((r := aexp(w.val, t)) case Record(coef:F,coef1:F,coef0:F)) =>
rec := r::Record(coef:F, coef1:F, coef0:F)
return [rec.coef ** w.exponent, w.exponent * rec.coef1,
w.exponent * rec.coef0]
"failed"
mkPlus f ==
(u := isPlus numer f) case "failed" => "failed"
d := denom f
[p / d for p in u::List(SparseMultivariatePolynomial(R, K))]
-- returns g if f = g/t
tdenom(f, t) ==
(denom f exquo numer t) case "failed" => "failed"
t * f
intlaplace(f, ss, g, v, vv) ==
is?(g, oplap) or ((i := integrate(g, v)) case List(F)) => "failed"
(u:=limit(i::F,equation(vv::OFE,plusInfinity()$OFE)$EQ)) case OFE =>
(l := limit(i::F, equation(vv::OFE, ss::OFE)$EQ)) case OFE =>
retractIfCan(u::OFE - l::OFE)@Union(F, "failed")
"failed"
"failed"
lapkernel(f, t, tt, ss) ==
(k := retractIfCan(f)@Union(K, "failed")) case "failed" => "failed"
empty?(arg := argument(k::K)) => "failed"
is?(op := operator k, "%diff"::SE) =>
not( #arg = 3) => "failed"
not(is?(arg.3, t)) => "failed"
fint := eval(arg.1, arg.2, tt)
s := name operator (kernels(ss).1)
ss * locallaplace(fint, t, tt, s, ss) - eval(fint, tt = 0)
not (empty?(rest arg)) => "failed"
member?(t, variables(a := first(arg) / tt)) => "failed"
is?(op := operator k, "Si"::SE) => atan(a / ss) / ss
is?(op, "Ci"::SE) => log((ss**2 + a**2) / a**2) / (2 * ss)
is?(op, "Ei"::SE) => log((ss + a) / a) / ss
-- digamma (or Gamma) needs SpecialFunctionCategory
-- which we do not have here
-- is?(op, "log"::SE) => (digamma(1) - log(a) - log(ss)) / ss
"failed"
-- Below we try to apply one of the texbook rules for computing
-- Laplace transforms, either reducing problem to simpler cases
-- or using one of known base cases
locallaplace(f, t, tt, s, ss) ==
zero? f => 0
(f = 1) => inv ss
-- laplace(f(t)/t,t,s)
-- = integrate(laplace(f(t),t,v), v = s..%plusInfinity)
(x := tdenom(f, tt)) case F =>
g := locallaplace(x::F, t, tt, vv := new()$SE, vvv := vv::F)
(x := intlaplace(f, ss, g, vv, vvv)) case F => x::F
oplap(f, tt, ss)
-- Use linearity
(u := mkPlus f) case List(F) =>
+/[locallaplace(g, t, tt, s, ss) for g in u::List(F)]
(rec := splitConstant(f, t)).const ^= 1 =>
rec.const * locallaplace(rec.nconst, t, tt, s, ss)
-- laplace(t^n*f(t),t,s) = (-1)^n*D(laplace(f(t),t,s), s, n))
(v := atn(f, t)) case Record(coef:F, deg:PI) =>
vv := v::Record(coef:F, deg:PI)
is?(la := locallaplace(vv.coef, t, tt, s, ss), oplap) => oplap(f,tt,ss)
(-1$Integer)**(vv.deg) * differentiate(la, s, vv.deg)
-- Complex shift rule
(w := aexp(f, t)) case Record(coef:F, coef1:F, coef0:F) =>
ww := w::Record(coef:F, coef1:F, coef0:F)
exp(ww.coef0) * locallaplace(ww.coef,t,tt,s,ss - ww.coef1)
-- Try base cases
(x := lapkernel(f, t, tt, ss)) case F => x::F
oplap(f, tt, ss)
setProperty(oplap,SPECIALDIFF,dvlap@((List F,SE)->F) pretend None)
|