This file is indexed.

/usr/share/axiom-20170501/src/algebra/LF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
)abbrev package LF LiouvillianFunction
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 10 August 1994
++ Description:
++ This package provides liouvillian functions over an integral domain.

LiouvillianFunction(R, F) : SIG == CODE where
  R:Join(OrderedSet, IntegralDomain)
  F:Join(FunctionSpace R,RadicalCategory,TranscendentalFunctionCategory)

  OP  ==> BasicOperator
  PR  ==> Polynomial R
  K   ==> Kernel F
  SE  ==> Symbol
  O   ==> OutputForm
  INP ==> InputForm
  INV ==> error "Invalid argument"

  SPECIALDIFF ==> "%specialDiff"
  SPECIALDISP ==> "%specialDisp"
  SPECIALINPUT ==> "%specialInput"
  SPECIALEQUAL ==> "%specialEqual"

  SIG ==> with

    belong? : OP -> Boolean
      ++ belong?(op) checks if op is Liouvillian

    operator : OP -> OP
      ++ operator(op) returns the Liouvillian operator based on op

    Ei : F -> F
      ++ Ei(f) denotes the exponential integral

    Si : F -> F
      ++ Si(f) denotes the sine integral

    Ci : F -> F
      ++ Ci(f) denotes the cosine integral

    li : F -> F
      ++ li(f) denotes the logarithmic integral

    erf : F -> F
      ++ erf(f) denotes the error function

    dilog : F -> F
      ++ dilog(f) denotes the dilogarithm

    fresnelS : F -> F
      ++ fresnelS(f) denotes the Fresnel integral S

    fresnelC : F -> F
      ++ fresnelC(f) denotes the Fresnel integral C

    integral : (F, SE) -> F
      ++ integral(f,x) indefinite integral of f with respect to x.

    integral : (F, SegmentBinding F) -> F
      ++ integral(f,x = a..b) denotes the definite integral of f with
      ++ respect to x from \spad{a} to b.

  CODE ==> add

    iei        : F  -> F
    isi        : F  -> F
    ici        : F  -> F
    ierf       : F  -> F
    ili        : F  -> F
    ili2       : F  -> F
    iint       : List F -> F
    eqint      : (K,K) -> Boolean
    dvint      : (List F, SE) -> F
    dvdint     : (List F, SE) -> F
    ddint      : List F -> O
    integrand  : List F -> F

    dummy := new()$SE :: F

    opint  := operator("integral"::Symbol)$CommonOperators
    opdint := operator("%defint"::Symbol)$CommonOperators
    opei   := operator("Ei"::Symbol)$CommonOperators
    opli   := operator("li"::Symbol)$CommonOperators
    opsi   := operator("Si"::Symbol)$CommonOperators
    opci   := operator("Ci"::Symbol)$CommonOperators
    opli2  := operator("dilog"::Symbol)$CommonOperators
    operf  := operator("erf"::Symbol)$CommonOperators
    opfis  := operator("fresnelS"::Symbol)$CommonOperators
    opfic  := operator("fresnelC"::Symbol)$CommonOperators

    Si x                == opsi x
    Ci x                == opci x
    Ei x                == opei x
    erf x               == operf x
    li  x               == opli x
    dilog x             == opli2 x
    fresnelS x          == opfis x
    fresnelC x          == opfic x

    belong? op     == has?(op, "prim")
    isi x          == kernel(opsi, x)
    ici x          == kernel(opci, x)
    ierf x         == (zero? x => 0; kernel(operf, x))
    ili2 x         == ((x = 1) => INV; kernel(opli2, x))
    ifis(x:F):F    == (zero? x => 0; kernel(opfis,x))
    ific(x:F):F    == (zero? x => 0; kernel(opfic,x))
    integrand l    == eval(first l, retract(second l)@K, third l)
    integral(f:F, x:SE) == opint [eval(f, k:=kernel(x)$K, dummy), dummy, k::F]

    iint l ==
      zero? first l => 0
      kernel(opint, l)

    ddint l ==
      int(integrand(l)::O * hconcat("d"::SE::O, third(l)::O),
                                    third(rest l)::O, third(rest rest l)::O)

    eqint(k1,k2) == 
      a1:=argument k1
      a2:=argument k2
      res:=operator k1 = operator k2
      if not res then return res
      res:= a1 = a2
      if res then return res
      res:= (a1.3 = a2.3) and (subst(a1.1,[retract(a1.2)@K],[a2.2]) = a2.1)

    dvint(l, x) ==
      k  := retract(second l)@K
      differentiate(third l, x) * integrand l
          + opint [differentiate(first l, x), second l, third l]


    dvdint(l, x) ==
      x = retract(y := third l)@SE => 0
      k := retract(d := second l)@K
      differentiate(h := third rest rest l,x) * eval(f := first l, k, h)
        - differentiate(g := third rest l, x) * eval(f, k, g)
             + opdint [differentiate(f, x), d, y, g, h]

    integral(f:F, s: SegmentBinding F) ==
      x := kernel(variable s)$K
      opdint [eval(f,x,dummy), dummy, x::F, lo segment s, hi segment s]

    ili x ==
      x = 1 => INV
      is?(x, "exp"::Symbol) => Ei first argument(retract(x)@K)
      kernel(opli, x)

    iei x ==
      x = 0 => INV
      is?(x, "log"::Symbol) => li first argument(retract(x)@K)
      kernel(opei, x)

    operator op ==
      is?(op, "integral"::Symbol)   => opint
      is?(op, "%defint"::Symbol)    => opdint
      is?(op, "Ei"::Symbol)         => opei
      is?(op, "Si"::Symbol)         => opsi
      is?(op, "Ci"::Symbol)         => opci
      is?(op, "li"::Symbol)         => opli
      is?(op, "erf"::Symbol)        => operf
      is?(op, "dilog"::Symbol)      => opli2
      is?(op, "fresnelC"::Symbol)   => opfis
      is?(op, "fresnelS"::Symbol)   => opfic
      error "Not a Liouvillian operator"

    evaluate(opei,    iei)$BasicOperatorFunctions1(F)
    evaluate(opli,    ili)
    evaluate(opsi,    isi)
    evaluate(opci,    ici)
    evaluate(operf,   ierf)
    evaluate(opli2,   ili2)
    evaluate(opfis,   ifis)
    evaluate(opfic,   ific)
    evaluate(opint,   iint)
    derivative(opsi,  (z1:F):F +-> sin(z1) / z1)
    derivative(opci,  (z1:F):F +-> cos(z1) / z1)
    derivative(opei,  (z1:F):F +-> exp(z1) / z1)
    derivative(opli,  (z1:F):F +-> inv log(z1))
    derivative(operf, (z1:F):F +-> 2 * exp(-(z1**2)) / sqrt(pi()))
    derivative(opli2, (z1:F):F +-> log(z1) / (1 - z1))
    derivative(opfis, (z1:F):F +-> sin(z1**2))
    derivative(opfic, (z1:F):F +-> cos(z1**2))
    setProperty(opint,SPECIALEQUAL,eqint@((K,K) -> Boolean) pretend None)
    setProperty(opint,SPECIALDIFF,dvint@((List F,SE) -> F) pretend None)
    setProperty(opdint,SPECIALDIFF,dvdint@((List F,SE)->F) pretend None)
    setProperty(opdint, SPECIALDISP, ddint@(List F -> O) pretend None)

    if R has ConvertibleTo INP then

      inint : List F -> INP
      indint: List F -> INP

      pint  : List INP -> INP
      pint l  == convert concat(convert("integral"::SE)@INP, l)

      inint l == 
        r2:= convert(
              [convert("::"::SE)@INP,
               convert(third l)@INP,
               convert("Symbol"::SE)@INP]@List INP)@INP
        pint [convert(integrand l)@INP, r2]

      indint l ==
        pint [convert(integrand l)@INP,
              convert concat(convert("="::SE)@INP,
                            [convert(third l)@INP,
                             convert concat(convert("SEGMENT"::SE)@INP,
                                           [convert(third rest l)@INP,
                                            convert(third rest rest l)@INP])])]

      setProperty(opint, SPECIALINPUT, inint@(List F -> INP) pretend None)
      setProperty(opdint, SPECIALINPUT, indint@(List F -> INP) pretend None)