This file is indexed.

/usr/share/axiom-20170501/src/algebra/LIECAT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
)abbrev category LIECAT LieAlgebra
++ Author: Michel Petitot (petitot@lifl.fr).
++ Date Created: 91
++ Date Last Updated: 7 Juillet 92
++ Description:
++ The category of Lie Algebras.
++ It is used by the domains of non-commutative algebra,
++ LiePolynomial and XPBWPolynomial. 

LieAlgebra(R) : Category == SIG where
  R : CommutativeRing

  SIG ==> Module(R) with

    construct :  ($,$) -> $
      ++ \axiom{construct(x,y)} returns the Lie bracket of \axiom{x} 
      ++ and \axiom{y}.

    NullSquare 
      ++ \axiom{NullSquare} means that \axiom{[x,x] = 0} holds.

    JacobiIdentity 
      ++ \axiom{JacobiIdentity} means that 
      ++ \axiom{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.

    if R has Field then 

       "/" : ($,R) -> $
         ++ \axiom{x/r} returns the division of \axiom{x} by \axiom{r}.
   add

      if R has Field then x / r == inv(r)$R * x