/usr/share/axiom-20170501/src/algebra/LIECAT.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | )abbrev category LIECAT LieAlgebra
++ Author: Michel Petitot (petitot@lifl.fr).
++ Date Created: 91
++ Date Last Updated: 7 Juillet 92
++ Description:
++ The category of Lie Algebras.
++ It is used by the domains of non-commutative algebra,
++ LiePolynomial and XPBWPolynomial. 
LieAlgebra(R) : Category == SIG where
  R : CommutativeRing
  SIG ==> Module(R) with
    construct :  ($,$) -> $
      ++ \axiom{construct(x,y)} returns the Lie bracket of \axiom{x} 
      ++ and \axiom{y}.
    NullSquare 
      ++ \axiom{NullSquare} means that \axiom{[x,x] = 0} holds.
    JacobiIdentity 
      ++ \axiom{JacobiIdentity} means that 
      ++ \axiom{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.
    if R has Field then 
       "/" : ($,R) -> $
         ++ \axiom{x/r} returns the division of \axiom{x} by \axiom{r}.
   add
      if R has Field then x / r == inv(r)$R * x
 |