/usr/share/axiom-20170501/src/algebra/LIMITPS.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 | )abbrev package LIMITPS PowerSeriesLimitPackage
++ Author: Clifton J. Williamson
++ Date Created: 21 March 1989
++ Date Last Updated: 30 March 1994
++ Description:
++ PowerSeriesLimitPackage implements limits of expressions
++ in one or more variables as one of the variables approaches a
++ limiting value. Included are two-sided limits, left- and right-
++ hand limits, and limits at plus or minus infinity.
PowerSeriesLimitPackage(R,FE) : SIG == CODE where
R : Join(GcdDomain,OrderedSet,RetractableTo Integer,
LinearlyExplicitRingOver Integer)
FE : Join(AlgebraicallyClosedField,TranscendentalFunctionCategory,
FunctionSpace R)
Z ==> Integer
RN ==> Fraction Integer
RF ==> Fraction Polynomial R
OFE ==> OrderedCompletion FE
OPF ==> OnePointCompletion FE
SY ==> Symbol
EQ ==> Equation
LF ==> LiouvillianFunction
UTS ==> UnivariateTaylorSeries
ULS ==> UnivariateLaurentSeries
UPXS ==> UnivariatePuiseuxSeries
EFULS ==> ElementaryFunctionsUnivariateLaurentSeries
EFUPXS ==> ElementaryFunctionsUnivariatePuiseuxSeries
FS2UPS ==> FunctionSpaceToUnivariatePowerSeries
FS2EXPXP ==> FunctionSpaceToExponentialExpansion
Problem ==> Record(func:String,prob:String)
RESULT ==> Union(OFE,"failed")
TwoSide ==> Record(leftHandLimit:RESULT,rightHandLimit:RESULT)
U ==> Union(OFE,TwoSide,"failed")
SIGNEF ==> ElementaryFunctionSign(R,FE)
SIG ==> with
limit : (FE,EQ OFE) -> U
++ limit(f(x),x = a) computes the real limit \spad{lim(x -> a,f(x))}.
complexLimit : (FE,EQ OPF) -> Union(OPF, "failed")
++ complexLimit(f(x),x = a) computes the complex limit
++ \spad{lim(x -> a,f(x))}.
limit : (FE,EQ FE,String) -> RESULT
++ limit(f(x),x=a,"left") computes the left hand real limit
++ \spad{lim(x -> a-,f(x))};
++ \spad{limit(f(x),x=a,"right")} computes the right hand real limit
++ \spad{lim(x -> a+,f(x))}.
CODE ==> add
import ToolsForSign(R)
import ElementaryFunctionStructurePackage(R,FE)
zeroFE:FE := 0
anyRootsOrAtrigs? : FE -> Boolean
complLimit : (FE,SY) -> Union(OPF,"failed")
okProblem? : (String,String) -> Boolean
realLimit : (FE,SY) -> U
xxpLimit : (FE,SY) -> RESULT
limitPlus : (FE,SY) -> RESULT
localsubst : (FE,Kernel FE,Z,FE) -> FE
locallimit : (FE,SY,OFE) -> U
locallimitcomplex : (FE,SY,OPF) -> Union(OPF,"failed")
poleLimit:(RN,FE,SY) -> U
poleLimitPlus:(RN,FE,SY) -> RESULT
noX?: (FE,SY) -> Boolean
noX?(fcn,x) == not member?(x,variables fcn)
constant?: FE -> Boolean
constant? fcn == empty? variables fcn
firstNonLogPtr: (FE,SY) -> List Kernel FE
firstNonLogPtr(fcn,x) ==
-- returns a pointer to the first element of kernels(fcn) which
-- has 'x' as a variable, which is not a logarithm, and which is
-- not simply 'x'
list := kernels fcn
while not empty? list repeat
ker := first list
not is?(ker,"log" :: Symbol) and member?(x,variables(ker::FE)) _
and not(x = name(ker)) =>
return list
list := rest list
empty()
finiteValueAtInfinity?: Kernel FE -> Boolean
finiteValueAtInfinity? ker ==
is?(ker,"erf" :: Symbol) => true
is?(ker,"sech" :: Symbol) => true
is?(ker,"csch" :: Symbol) => true
is?(ker,"tanh" :: Symbol) => true
is?(ker,"coth" :: Symbol) => true
is?(ker,"atan" :: Symbol) => true
is?(ker,"acot" :: Symbol) => true
is?(ker,"asec" :: Symbol) => true
is?(ker,"acsc" :: Symbol) => true
is?(ker,"acsch" :: Symbol) => true
is?(ker,"acoth" :: Symbol) => true
is?(ker,"fresnelS" :: Symbol) => true
is?(ker,"fresnelC" :: Symbol) => true
error "finiteValueAtInfinity? true, but unknown value at infinity"
knownValueAtInfinity?: Kernel FE -> Boolean
knownValueAtInfinity? ker ==
is?(ker,"exp" :: Symbol) => true
is?(ker,"sinh" :: Symbol) => true
is?(ker,"cosh" :: Symbol) => true
false
leftOrRight: (FE,SY,FE) -> SingleInteger
leftOrRight(fcn,x,limVal) ==
-- function is called when limitPlus(fcn,x) = limVal
-- determines whether the limiting value is approached
-- from the left or from the right
(value := limitPlus(inv(fcn - limVal),x)) case "failed" => 0
(inf := whatInfinity(val := value :: OFE)) = 0 =>
error "limit package: internal error"
inf
specialLimit1: (FE,SY) -> RESULT
specialLimitKernel: (Kernel FE,SY) -> RESULT
specialLimitNormalize: (FE,SY) -> RESULT
specialLimit: (FE, SY) -> RESULT
specialLimit(fcn, x) ==
xkers := [k for k in kernels fcn | member?(x,variables(k::FE))]
#xkers = 1 => specialLimit1(fcn,x)
num := numerator fcn
den := denominator fcn
for k in xkers repeat
(fval := limitPlus(k::FE,x)) case "failed" =>
return specialLimitNormalize(fcn,x)
whatInfinity(val := fval::OFE) ^= 0 =>
return specialLimitNormalize(fcn,x)
(valu := retractIfCan(val)@Union(FE,"failed")) case "failed" =>
return specialLimitNormalize(fcn,x)
finVal := valu :: FE
num := eval(num, k, finVal)
den := eval(den, k, finVal)
den = 0 => return specialLimitNormalize(fcn,x)
(num/den) :: OFE :: RESULT
specialLimitNormalize(fcn,x) == -- tries to normalize result first
nfcn := normalize(fcn)
fcn ^= nfcn => limitPlus(nfcn,x)
xkers := [k for k in tower fcn | member?(x,variables(k::FE))]
# xkers ^= 2 => "failed"
expKers := [k for k in xkers | is?(k, "exp" :: Symbol)]
# expKers ^= 1 => "failed"
-- fcn is a rational function of x and exp(g(x))
-- for some rational function g
expKer := first expKers
(fval := limitPlus(expKer::FE,x)) case "failed" => "failed"
vv := new()$SY; eq : EQ FE := equation(expKer :: FE,vv :: FE)
cc := eval(fcn,eq)
expKerLim := fval :: OFE
-- following test for "failed" is needed due to compiler bug
-- limVal case OFE generates EQCAR(limVal, 1) which
-- fails on atom "failed"
(limVal := locallimit(cc,vv,expKerLim)) case "failed" => "failed"
limVal case OFE =>
limm := limVal :: OFE
(lim := retractIfCan(limm)@Union(FE,"failed")) case "failed" =>
"failed" -- need special handling for directions at infinity
limitPlus(lim, x)
"failed"
-- limit of expression having only 1 kernel involving x
specialLimit1(fcn,x) ==
-- find the first interesting kernel in tower(fcn)
xkers := [k for k in kernels fcn | member?(x,variables(k::FE))]
#xkers ^= 1 => "failed"
ker := first xkers
vv := new()$SY; eq : EQ FE := equation(ker :: FE,vv :: FE)
cc := eval(fcn,eq)
member?(x,variables cc) => "failed"
(lim := specialLimitKernel(ker, x)) case "failed" => lim
argLim : OFE := lim :: OFE
(limVal := locallimit(cc,vv,argLim)) case "failed" => "failed"
limVal case OFE => limVal :: OFE
"failed"
-- limit of single kernel involving x
specialLimitKernel(ker,x) ==
is?(ker,"log" :: Symbol) =>
args := argument ker
empty? args => "failed" -- error "No argument"
not empty? rest args => "failed" -- error "Too many arugments"
arg := first args
-- compute limit(x -> 0+,arg)
(limm := limitPlus(arg,x)) case "failed" => "failed"
lim := limm :: OFE
(inf := whatInfinity lim) = -1 => "failed"
argLim : OFE :=
-- log(+infinity) = +infinity
inf = 1 => lim
-- now 'lim' must be finite
(li := retractIfCan(lim)@Union(FE,"failed") :: FE) = 0 =>
-- log(0) = -infinity
leftOrRight(arg,x,0) = 1 => minusInfinity()
return "failed"
log(li) :: OFE
-- kernel should be a function of one argument f(arg)
args := argument(ker)
empty? args => "failed" -- error "No argument"
not empty? rest args => "failed" -- error "Too many arugments"
arg := first args
-- compute limit(x -> 0+,arg)
(limm := limitPlus(arg,x)) case "failed" => "failed"
lim := limm :: OFE
f := elt(operator ker,(var := new()$SY) :: FE)
-- compute limit(x -> 0+,f(arg))
-- case where 'lim' is finite
(inf := whatInfinity lim) = 0 =>
is?(ker,"erf" :: Symbol) => erf(retract(lim)@FE)$LF(R,FE) :: OFE
(kerValue := locallimit(f,var,lim)) case "failed" => "failed"
kerValue case OFE => kerValue :: OFE
"failed"
-- case where 'lim' is plus infinity
inf = 1 =>
finiteValueAtInfinity? ker =>
val : FE :=
is?(ker,"erf" :: Symbol) => 1
is?(ker,"sech" :: Symbol) => 0
is?(ker,"csch" :: Symbol) => 0
is?(ker,"tanh" :: Symbol) => 0
is?(ker,"coth" :: Symbol) => 0
is?(ker,"atan" :: Symbol) => pi()/(2 :: FE)
is?(ker,"acot" :: Symbol) => 0
is?(ker,"asec" :: Symbol) => pi()/(2 :: FE)
is?(ker,"acsc" :: Symbol) => 0
is?(ker,"acsch" :: Symbol) => 0
is?(ker,"fresnelS" :: Symbol) => -sqrt(pi()/(8::FE))
is?(ker,"fresnelC" :: Symbol) => -sqrt(pi()/(8::FE))
error "finiteValueAtInfinity? true, but unknown value at infinity"
-- ker must be acoth
0
val :: OFE
knownValueAtInfinity? ker =>
lim -- limit(exp, cosh, sinh ,x=inf) = inf
"failed"
-- case where 'lim' is minus infinity
finiteValueAtInfinity? ker =>
val : FE :=
is?(ker,"erf" :: Symbol) => -1
is?(ker,"sech" :: Symbol) => 0
is?(ker,"csch" :: Symbol) => 0
is?(ker,"tanh" :: Symbol) => 0
is?(ker,"coth" :: Symbol) => 0
is?(ker,"atan" :: Symbol) => -pi()/(2 :: FE)
is?(ker,"acot" :: Symbol) => pi()
is?(ker,"asec" :: Symbol) => -pi()/(2 :: FE)
is?(ker,"acsc" :: Symbol) => -pi()
is?(ker,"acsch" :: Symbol) => 0
-- ker must be acoth
0
val :: OFE
knownValueAtInfinity? ker =>
is?(ker,"exp" :: Symbol) => (0@FE) :: OFE
is?(ker,"sinh" :: Symbol) => lim
is?(ker,"cosh" :: Symbol) => plusInfinity()
"failed"
"failed"
logOnlyLimit: (FE,SY) -> RESULT
logOnlyLimit(coef,x) ==
-- this function is called when the 'constant' coefficient involves
-- the variable 'x'. Its purpose is to compute a right hand limit
-- of an expression involving log x. Here log x is replaced by -1/v,
-- where v is a new variable. If the new expression no longer involves
-- x, then take the right hand limit as v -> 0+
vv := new()$SY
eq : EQ FE := equation(log(x :: FE),-inv(vv :: FE))
member?(x,variables(cc := eval(coef,eq))) => "failed"
limitPlus(cc,vv)
locallimit(fcn,x,a) ==
-- Here 'fcn' is a function f(x) = f(x,...) in 'x' and possibly
-- other variables, and 'a' is a limiting value. The function
-- computes lim(x -> a,f(x)).
xK := retract(x::FE)@Kernel(FE)
(n := whatInfinity a) = 0 =>
realLimit(localsubst(fcn,xK,1,retract(a)@FE),x)
(u := limitPlus(eval(fcn,xK,n * inv(xK::FE)),x))
case "failed" => "failed"
u::OFE
localsubst(fcn, k, n, a) ==
a = 0 and n = 1 => fcn
eval(fcn,k,n * (k::FE) + a)
locallimitcomplex(fcn,x,a) ==
xK := retract(x::FE)@Kernel(FE)
(g := retractIfCan(a)@Union(FE,"failed")) case FE =>
complLimit(localsubst(fcn,xK,1,g::FE),x)
complLimit(eval(fcn,xK,inv(xK::FE)),x)
limit(fcn,eq,str) ==
(xx := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" =>
error "limit:left hand side must be a variable"
x := xx :: SY; a := rhs eq
xK := retract(x::FE)@Kernel(FE)
limitPlus(localsubst(fcn,xK,direction str,a),x)
anyRootsOrAtrigs? fcn ==
-- determines if 'fcn' has any kernels which are roots
-- or if 'fcn' has any kernels which are inverse trig functions
-- which could produce series expansions with fractional exponents
for kernel in tower fcn repeat
is?(kernel,"nthRoot" :: Symbol) => return true
is?(kernel,"asin" :: Symbol) => return true
is?(kernel,"acos" :: Symbol) => return true
is?(kernel,"asec" :: Symbol) => return true
is?(kernel,"acsc" :: Symbol) => return true
false
complLimit(fcn,x) ==
-- computes lim(x -> 0,fcn) using a Puiseux expansion of fcn,
-- if fcn is an expression involving roots, and using a Laurent
-- expansion of fcn otherwise
lim : FE :=
anyRootsOrAtrigs? fcn =>
ppack := FS2UPS(R,FE,RN,_
UPXS(FE,x,zeroFE),EFUPXS(FE,ULS(FE,x,zeroFE),UPXS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE))),x)
pseries := exprToUPS(fcn,false,"complex")$ppack
pseries case %problem => return "failed"
if pole?(upxs := pseries.%series) then upxs := map(normalize,upxs)
pole? upxs => return infinity()
coefficient(upxs,0)
lpack := FS2UPS(R,FE,Z,ULS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE)),x)
lseries := exprToUPS(fcn,false,"complex")$lpack
lseries case %problem => return "failed"
if pole?(uls := lseries.%series) then uls := map(normalize,uls)
pole? uls => return infinity()
coefficient(uls,0)
-- can the following happen?
member?(x,variables lim) =>
member?(x,variables(answer := normalize lim)) =>
error "limit: can't evaluate limit"
answer :: OPF
lim :: FE :: OPF
okProblem?(function,problem) ==
(function = "log") or (function = "nth root") =>
(problem = "series of non-zero order") or _
(problem = "negative leading coefficient")
(function = "atan") => problem = "branch problem"
(function = "erf") => problem = "unknown kernel"
problem = "essential singularity"
poleLimit(order,coef,x) ==
-- compute limit for function with pole
not member?(x,variables coef) =>
(s := sign(coef)$SIGNEF) case Integer =>
rtLim := (s :: Integer) * plusInfinity()
even? numer order => rtLim
even? denom order => ["failed",rtLim]$TwoSide
[-rtLim,rtLim]$TwoSide
-- infinite limit, but cannot determine sign
"failed"
error "limit: can't evaluate limit"
poleLimitPlus(order,coef,x) ==
-- compute right hand limit for function with pole
not member?(x,variables coef) =>
(s := sign(coef)$SIGNEF) case Integer =>
(s :: Integer) * plusInfinity()
-- infinite limit, but cannot determine sign
"failed"
(clim := specialLimit(coef,x)) case "failed" => "failed"
zero? (lim := clim :: OFE) =>
-- in this event, we need to determine if the limit of
-- the coef is 0+ or 0-
(cclim := specialLimit(inv coef,x)) case "failed" => "failed"
ss := whatInfinity(cclim :: OFE) :: Z
zero? ss =>
error "limit: internal error"
ss * plusInfinity()
t := whatInfinity(lim :: OFE) :: Z
zero? t =>
(tt := sign(coef)$SIGNEF) case Integer =>
(tt :: Integer) * plusInfinity()
-- infinite limit, but cannot determine sign
"failed"
t * plusInfinity()
realLimit(fcn,x) ==
-- computes lim(x -> 0,fcn) using a Puiseux expansion of fcn,
-- if fcn is an expression involving roots, and using a Laurent
-- expansion of fcn otherwise
lim : Union(FE,"failed") :=
anyRootsOrAtrigs? fcn =>
ppack := FS2UPS(R,FE,RN,_
UPXS(FE,x,zeroFE),EFUPXS(FE,ULS(FE,x,zeroFE),UPXS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE))),x)
pseries := exprToUPS(fcn,true,"real: two sides")$ppack
pseries case %problem =>
trouble := pseries.%problem
function := trouble.func; problem := trouble.prob
okProblem?(function,problem) =>
left :=
xK : Kernel FE := kernel x
fcn0 := eval(fcn,xK,-(xK :: FE))
limitPlus(fcn0,x)
right := limitPlus(fcn,x)
(left case "failed") and (right case "failed") =>
return "failed"
if (left case OFE) and (right case OFE) then
(left :: OFE) = (right :: OFE) => return (left :: OFE)
return([left,right]$TwoSide)
return "failed"
if pole?(upxs := pseries.%series) then upxs := map(normalize,upxs)
pole? upxs =>
cp := coefficient(upxs,ordp := order upxs)
return poleLimit(ordp,cp,x)
coefficient(upxs,0)
lpack := FS2UPS(R,FE,Z,ULS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE)),x)
lseries := exprToUPS(fcn,true,"real: two sides")$lpack
lseries case %problem =>
trouble := lseries.%problem
function := trouble.func; problem := trouble.prob
okProblem?(function,problem) =>
left :=
xK : Kernel FE := kernel x
fcn0 := eval(fcn,xK,-(xK :: FE))
limitPlus(fcn0,x)
right := limitPlus(fcn,x)
(left case "failed") and (right case "failed") =>
return "failed"
if (left case OFE) and (right case OFE) then
(left :: OFE) = (right :: OFE) => return (left :: OFE)
return([left,right]$TwoSide)
return "failed"
if pole?(uls := lseries.%series) then uls := map(normalize,uls)
pole? uls =>
cl := coefficient(uls,ordl := order uls)
return poleLimit(ordl :: RN,cl,x)
coefficient(uls,0)
lim case "failed" => "failed"
member?(x,variables(lim :: FE)) =>
member?(x,variables(answer := normalize(lim :: FE))) =>
error "limit: can't evaluate limit"
answer :: OFE
lim :: FE :: OFE
xxpLimit(fcn,x) ==
-- computes lim(x -> 0+,fcn) using an exponential expansion of fcn
xpack := FS2EXPXP(R,FE,x,zeroFE)
xxp := exprToXXP(fcn,true)$xpack
xxp case %problem => "failed"
limitPlus(xxp.%expansion)
limitPlus(fcn,x) ==
-- computes lim(x -> 0+,fcn) using a generalized Puiseux expansion
-- of fcn, if fcn is an expression involving roots, and using a
-- generalized Laurent expansion of fcn otherwise
lim : Union(FE,"failed") :=
anyRootsOrAtrigs? fcn =>
ppack := FS2UPS(R,FE,RN,_
UPXS(FE,x,zeroFE),EFUPXS(FE,ULS(FE,x,zeroFE),UPXS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE))),x)
pseries := exprToGenUPS(fcn,true,"real: right side")$ppack
pseries case %problem =>
trouble := pseries.%problem
ff := trouble.func; pp := trouble.prob
(pp = "negative leading coefficient") => return "failed"
"failed"
-- pseries case %problem => return "failed"
if pole?(upxs := pseries.%series) then upxs := map(normalize,upxs)
pole? upxs =>
cp := coefficient(upxs,ordp := order upxs)
return poleLimitPlus(ordp,cp,x)
coefficient(upxs,0)
lpack := FS2UPS(R,FE,Z,ULS(FE,x,zeroFE),_
EFULS(FE,UTS(FE,x,zeroFE),ULS(FE,x,zeroFE)),x)
lseries := exprToGenUPS(fcn,true,"real: right side")$lpack
lseries case %problem =>
trouble := lseries.%problem
ff := trouble.func; pp := trouble.prob
(pp = "negative leading coefficient") => return "failed"
"failed"
-- lseries case %problem => return "failed"
if pole?(uls := lseries.%series) then uls := map(normalize,uls)
pole? uls =>
cl := coefficient(uls,ordl := order uls)
return poleLimitPlus(ordl :: RN,cl,x)
coefficient(uls,0)
lim case "failed" =>
(xLim := xxpLimit(fcn,x)) case "failed" => specialLimit(fcn,x)
xLim
member?(x,variables(lim :: FE)) =>
member?(x,variables(answer := normalize(lim :: FE))) =>
(xLim := xxpLimit(answer,x)) case "failed" => specialLimit(answer,x)
xLim
answer :: OFE
lim :: FE :: OFE
limit(fcn:FE,eq:EQ OFE) ==
(f := retractIfCan(lhs eq)@Union(FE,"failed")) case "failed" =>
error "limit:left hand side must be a variable"
(xx := retractIfCan(f)@Union(SY,"failed")) case "failed" =>
error "limit:left hand side must be a variable"
x := xx :: SY; a := rhs eq
locallimit(fcn,x,a)
complexLimit(fcn:FE,eq:EQ OPF) ==
(f := retractIfCan(lhs eq)@Union(FE,"failed")) case "failed" =>
error "limit:left hand side must be a variable"
(xx := retractIfCan(f)@Union(SY,"failed")) case "failed" =>
error "limit:left hand side must be a variable"
x := xx :: SY; a := rhs eq
locallimitcomplex(fcn,x,a)
|