This file is indexed.

/usr/share/axiom-20170501/src/algebra/LIMITRF.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
)abbrev package LIMITRF RationalFunctionLimitPackage
++ Author: Manuel Bronstein
++ Date Created: 4 October 1989
++ Date Last Updated: 26 November 1991
++ Description: 
++ Computation of limits for rational functions.

RationalFunctionLimitPackage(R) : SIG == CODE where
  R : GcdDomain

  Z       ==> Integer
  P       ==> Polynomial R
  RF      ==> Fraction P
  EQ      ==> Equation
  ORF     ==> OrderedCompletion RF
  OPF     ==> OnePointCompletion RF
  UP      ==> SparseUnivariatePolynomial RF
  SE      ==> Symbol
  QF      ==> Fraction SparseUnivariatePolynomial RF
  Result  ==> Union(ORF, "failed")
  TwoSide ==> Record(leftHandLimit:Result, rightHandLimit:Result)
  U       ==> Union(ORF, TwoSide, "failed")
  RFSGN   ==> RationalFunctionSign(R)
 
  SIG ==> with

    -- The following are the one we really want, but the interpreter cannot
    -- handle them...
    --  limit: (RF,EQ ORF) -> U
    --  ++ limit(f(x),x,a) computes the real two-sided limit lim(x -> a,f(x))
 
    --  complexLimit: (RF,EQ OPF) -> OPF
    --  ++ complexLimit(f(x),x,a) computes the complex limit lim(x -> a,f(x))
 
    -- ... so we replace them by the following 4:

    limit : (RF,EQ OrderedCompletion P) -> U
      ++ limit(f(x),x = a) computes the real two-sided limit
      ++ of f as its argument x approaches \spad{a}.

    limit : (RF,EQ RF) -> U
      ++ limit(f(x),x = a) computes the real two-sided limit
      ++ of f as its argument x approaches \spad{a}.

    complexLimit : (RF,EQ OnePointCompletion P) -> OPF
      ++ \spad{complexLimit(f(x),x = a)} computes the complex limit
      ++ of \spad{f} as its argument x approaches \spad{a}.

    complexLimit : (RF,EQ RF) -> OPF
      ++ complexLimit(f(x),x = a) computes the complex limit
      ++ of f as its argument x approaches \spad{a}.

    limit : (RF,EQ RF,String) -> Result
      ++ limit(f(x),x,a,"left") computes the real limit
      ++ of f as its argument x approaches \spad{a} from the left;
      ++ limit(f(x),x,a,"right") computes the corresponding limit as x
      ++ approaches \spad{a} from the right.
 
  CODE ==> add

    import ToolsForSign R
    import InnerPolySign(RF, UP)
    import RFSGN
    import PolynomialCategoryQuotientFunctions(IndexedExponents SE,
                                                      SE, R, P, RF)
 
    finiteComplexLimit: (QF, RF) -> OPF
    finiteLimit       : (QF, RF) -> U
    fLimit            : (Z, UP, RF, Z) -> Result
 
    -- These 2 should be exported, see comment above
    locallimit       : (RF, SE, ORF) -> U
    locallimitcomplex: (RF, SE, OPF) -> OPF
 
    limit(f:RF,eq:EQ RF) ==
      (xx := retractIfCan(lhs eq)@Union(SE,"failed")) case "failed" =>
        error "limit: left hand side must be a variable"
      x := xx :: SE; a := rhs eq
      locallimit(f,x,a::ORF)
 
    complexLimit(f:RF,eq:EQ RF) ==
      (xx := retractIfCan(lhs eq)@Union(SE,"failed")) case "failed" =>
        error "limit: left hand side must be a variable"
      x := xx :: SE; a := rhs eq
      locallimitcomplex(f,x,a::OPF)
 
    limit(f:RF,eq:EQ OrderedCompletion P) ==
      (p := retractIfCan(lhs eq)@Union(P,"failed")) case "failed" =>
        error "limit: left hand side must be a variable"
      (xx := retractIfCan(p)@Union(SE,"failed")) case "failed" =>
        error "limit: left hand side must be a variable"
      x := xx :: SE
      a := map(y +-> y::RF,rhs eq)$OrderedCompletionFunctions2(P,RF)
      locallimit(f,x,a)
 
    complexLimit(f:RF,eq:EQ OnePointCompletion P) ==
      (p := retractIfCan(lhs eq)@Union(P,"failed")) case "failed" =>
        error "limit: left hand side must be a variable"
      (xx := retractIfCan(p)@Union(SE,"failed")) case "failed" =>
        error "limit: left hand side must be a variable"
      x := xx :: SE
      a := map(y +-> y::RF,rhs eq)$OnePointCompletionFunctions2(P,RF)
      locallimitcomplex(f,x,a)
 
    fLimit(n, d, a, dir) ==
      (s := signAround(d, a, dir, sign$RFSGN)) case "failed" => "failed"
      n * (s::Z) * plusInfinity()
 
    finiteComplexLimit(f, a) ==
      zero?(n := (numer f) a) => 0
      zero?(d := (denom f) a) => infinity()
      (n / d)::OPF
 
    finiteLimit(f, a) ==
      zero?(n := (numer f) a) => 0
      zero?(d := (denom f) a) =>
        (s := sign(n)$RFSGN) case "failed" => "failed"
        rhsl := fLimit(s::Z, denom f, a, 1)
        lhsl := fLimit(s::Z, denom f, a, -1)
        rhsl case "failed" =>
          lhsl case "failed" => "failed"
          [lhsl, rhsl]
        lhsl case "failed" => [lhsl, rhsl]
        rhsl::ORF = lhsl::ORF => lhsl::ORF
        [lhsl, rhsl]
      (n / d)::ORF
 
    locallimit(f,x,a) ==
      g := univariate(f, x)
      zero?(n := whatInfinity a) => finiteLimit(g, retract a)
      (dn := degree numer g) > (dd := degree denom g) =>
        (sn := signAround(numer g, n, sign$RFSGN)) case "failed" => "failed"
        (sd := signAround(denom g, n, sign$RFSGN)) case "failed" => "failed"
        (sn::Z) * (sd::Z) * plusInfinity()
      dn < dd => 0
      ((leadingCoefficient numer g) / (leadingCoefficient denom g))::ORF
 
    limit(f,eq,st) ==
      (xx := retractIfCan(lhs eq)@Union(SE,"failed")) case "failed" =>
        error "limit: left hand side must be a variable"
      x := xx :: SE; a := rhs eq
      zero?(n := (numer(g := univariate(f, x))) a) => 0
      zero?(d := (denom g) a) =>
        (s := sign(n)$RFSGN) case "failed" => "failed"
        fLimit(s::Z, denom g, a, direction st)
      (n / d)::ORF
 
    locallimitcomplex(f,x,a) ==
      g := univariate(f, x)
      (r := retractIfCan(a)@Union(RF, "failed")) case RF =>
        finiteComplexLimit(g, r::RF)
      (dn := degree numer g) > (dd := degree denom g) => infinity()
      dn < dd => 0
      ((leadingCoefficient numer g) / (leadingCoefficient denom g))::OPF