This file is indexed.

/usr/share/axiom-20170501/src/algebra/LISYSER.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
)abbrev package LISYSER LinearSystemFromPowerSeriesPackage
++ Authors: Gaetan Hache
++ Date Created:  1996
++ Date Last Updated: May 2010 by Tim Daly
++ Description: 
++ Part of the PAFF package

LinearSystemFromPowerSeriesPackage(K,PCS) : SIG == CODE where
  K : Field
  PCS : LocalPowerSeriesCategory(K)
    
  INT     ==> Integer
  TERM    ==> Record(k:INT,c:K)    
  SER     ==> Stream(TERM)
  LOpPack ==> LinesOpPack(K)
    
  SIG ==> with

    finiteSeries2LinSysWOVectorise : (List PCS, INT) -> Matrix K

    finiteSeries2LinSys : (List PCS, INT) -> Matrix K
      ++ finiteSeries2LinSys(ls,n) returns a matrix which right kernel 
      ++ is the solution of the linear combinations of the series in ls 
      ++ which has order greater or equal to n.
      ++ NOTE: All the series in ls must be finite and must have order 
      ++ at least 0: so one must first call on each of them the
      ++ function filterUpTo(s,n) and apply an appropriate shift 
      ++ (mult by a power of t).

    finiteSeries2Vector : (PCS, INT) -> List K
    
  CODE ==> add

    finiteSeries2ListOfTerms: PCS -> List TERM

    finiteSeries2ListOfTermsStream: SER -> List TERM
      
    finiteSeries2ListOfTermsStream(s)==     
      empty?(s) => empty()
      cons(frst s , finiteSeries2ListOfTermsStream(rst(s)))
      
    finiteSeries2LinSys(ls,n)==
      ll:List K:=  [0$K]
      lZero:=new(#ls pretend NonNegativeInteger,ll)$List(List(K))
      n <= 0  => transpose matrix lZero
      tMat:=transpose matrix [finiteSeries2Vector(s,n) for s in ls]
      rowEchWoZeroLines(tMat)$LOpPack

    finiteSeries2LinSysWOVectorise(ls,n)==
      ll:List K:=  [0$K]
      lZero:=new(#ls pretend NonNegativeInteger,ll)$List(List(K))
      n <= 0  => transpose matrix lZero
      tMat:=transpose matrix [finiteSeries2Vector(s,n) for s in ls]
      rowEchWoZeroLinesWOVectorise(tMat)$LOpPack
           
    finiteSeries2ListOfTerms(s)==
      ss:SER:= s :: SER
      finiteSeries2ListOfTermsStream(ss)
  
    finiteSeries2Vector(ins,n)==
      lZero:=new((n pretend NonNegativeInteger),0)$List(K)
      s:= removeFirstZeroes ins
      lOfTerm:=finiteSeries2ListOfTerms(s)
      for t in lOfTerm repeat lZero.((t.k)+1):= t.c
      lZero