This file is indexed.

/usr/share/axiom-20170501/src/algebra/LPARSPT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
)abbrev package LPARSPT LocalParametrizationOfSimplePointPackage
++ Author: Gaetan Hache
++ Date Created: 17 nov 1992
++ Date Last Updated: May 2010 by Tim Daly
++ Description:  
++ This package is part of the PAFF package

LocalParametrizationOfSimplePointPackage(K,symb,PolyRing,E,ProjPt,PCS,Plc) :
 SIG == CODE where
  K : Field
  symb : List(Symbol)
  E : DirectProductCategory(#symb,NonNegativeInteger)
  OV  ==> OrderedVariableList(symb)
  PolyRing : PolynomialCategory(K,E,OV)
  ProjPt   : ProjectiveSpaceCategory(K)
  PCS      : LocalPowerSeriesCategory(K)
  Plc      : PlacesCategory(K,PCS)

  PI       ==> PositiveInteger
  NNI      ==> NonNegativeInteger
  PPFC1    ==> PolynomialPackageForCurve(K,PolyRing,E,#symb,ProjPt)
  PackPoly ==> PackageForPoly(K,PolyRing,E,#symb)
  UP       ==> SparseUnivariatePolynomial(K)
  UPUP     ==> SparseUnivariatePolynomial(UP)

  SIG ==>  with

    printInfo : Boolean -> Boolean
      ++ printInfo(b) set a flag such that when true (b <- true) prints 
      ++ some information during some critical computation.

    printInfo : () -> Boolean
      ++ printInfo() returns the value of the \spad{printInfo} flag.

    pointToPlace : (ProjPt,PolyRing) -> Plc
      ++ pointToPlace(pt,pol) takes for input a simple point pt on the curve 
      ++ defined by pol and set the local parametrization of the point.

    localParamOfSimplePt : (ProjPt,PolyRing,Integer) -> List PCS
      ++ localParamOfSimplePt(pt,pol,n) computes the local parametrization 
      ++ of the simple point pt on the curve defined by pol. This local 
      ++ parametrization is done according to the standard open affine 
      ++ plane set by n

    pointDominateBy : Plc -> ProjPt
      ++ pointDominateBy(pl) returns the projective point dominated 
      ++ by the place pl.

    localize : (PolyRing,ProjPt,PolyRing,Integer) -> _
                Record(fnc:PolyRing,crv:PolyRing,chart:List(Integer))
      ++ localize(f,pt,crv,n) returns a record containing the polynomials f 
      ++ and crv translate to the origin with respect to pt. The last 
      ++ element of the records, consisting of three integers contains 
      ++ information about the local parameter that will be used 
      ++ (either x or y): the first integer correspond to the variable 
      ++ that will be used as a local parameter.

  CODE ==> add

    import PCS
    import PolyRing
    import PPFC1
    import PackPoly
    
    valuationAndMore: (UPUP,UPUP) -> _
                       Record(ord:Integer,value:K,fnc:UPUP,crv:UPUP)

    localize2: (PolyRing,ProjPt,PolyRing,Integer) -> _
               Record(fnc2:UPUP,crv2:UPUP)

    coerceToUPUP: (PolyRing,List Integer) -> UPUP

    paramAtOrigin: (UPUP,UPUP,Integer) -> PCS
  
    strictTransform: (UPUP,NNI) -> UPUP

    translate: (UPUP,K) -> UPUP

    constant: UPUP -> K

    intCoord: UPUP  -> K

    localMultiplicity: UPUP -> NNI

    mapDegree: (NNI,NNI,NNI) -> NNI

    listVar:List(OV):= [index(i::PI)$OV for i in 1..#symb]

    listMonoPols:List(PolyRing):=listVariable()

    pointDominateBy(pl)==
      lpl:List PCS:=localParam(pl)
      empty? lpl => _
       error "LPARSPT:pointDominateBy::parametrization of point not done yet"
      lK:List K:=[ findCoef(s,0) for s in lpl]
      projectivePoint(lK)
    
    localParamOfSimplePt(pt,curve,nV)==
      mult:NNI:=multiplicity(curve,pt,nV)
      ^one?(mult) => _
        error "The point is not simple or is not on the curve !"
      lcl:=[localize2(var,pt,curve,nV) for var in listMonoPols]
      [paramAtOrigin(l.fnc2,l.crv2,0) for l in lcl]

    pointToPlace(pt,curve)==
      -- define the chart for strictTransform (of simple point)
      nV:Integer:=lastNonNull pt
      pth:=homogenize(pt,nV)
      chart:List Integer:=[0,0,nV]
      mult:NNI:=multiplicity(curve,pth,nV)
      ^one?(mult) => 
        error "The point is not simple or is not on the curve"
      -- create a place from the simple point. This is done by giving
      -- a name to the place: in this case it is the coordinate of 
      -- the projective point.
      lpth:List K:= pth :: List(K)
      plc:Plc:=create(lpth)$Plc
      ^empty?(localParam(plc)) => plc
      lcl:=[localize2(var,pth,curve,nV) for var in listMonoPols]
      lPar:=[paramAtOrigin(l.fnc2,l.crv2,0) for l in lcl]
      setParam!(plc,lPar)
      dd:=degree pth 
      setDegree!(plc,dd)
      plc

    localVarForPrintInfo:Boolean:=false()$Boolean

    printInfo()==localVarForPrintInfo

    printInfo(flag)==localVarForPrintInfo:=flag

    mapDegree(n,mx,m)==
      dd:=(n+mx-m) 
      dd < 0 => _
        error "LPARSPT:mapDegree called by PARAMP:strictTransform failed"
      dd  pretend NNI

    strictTransform(pol,m)==
      zero?(pol) => 0
      tc:=leadingCoefficient pol
      tk:= degree pol
      newTc:= mapExponents(mapDegree(#1,tk,m),tc)
      monomial(newTc,tk)$UPUP + strictTransform(reductum pol,m)

    Y == monomial(1,1)$UPUP

    trY: (K,NonNegativeInteger) -> UPUP
    trY(a,n)== (monomial(monomial(a,0)$UP,0)$UPUP + Y)**n

    translate(pol,a)==
      zero?(pol) => 0 
      tc:=leadingCoefficient pol
      tk:= degree pol
      trY(a,tk) * tc + translate(reductum pol, a)

    constant(pol)==coefficient(coefficient(pol,0)$UPUP,0)$UP

    intCoord(pol)==
      coefY:=coefficient(coefficient(pol,1)$UPUP,0)$UP
      cnst:=constant(pol)
      -cnst * inv coefY

    localMultiplicity(pol)==
      zero?(pol) => error "Cannot compute the multiplicity for 0"
      redPol:= reductum pol
      tc:=leadingCoefficient pol
      tk:= degree pol
      m:=tk + minimumDegree(tc)$UP
      zero?(redPol) => m
      min( m, localMultiplicity(redPol))

    coerceToUPUP(pol,chart)==
      zero?(pol) => 0
      lExp:=parts degree pol
      lCoef:=leadingCoefficient pol
      expX:=lExp(chart.1)
      expY:=lExp(chart.2)
      monomial(monomial(lCoef,expX)$UP,expY)$UPUP + _
        coerceToUPUP(reductum(pol),chart)

    -- testing this function. See paramPack for original version. 
    valuationAndMore(f:UPUP,curve:UPUP)==
      -- this function evaluate the function f at the origin 
      -- which must be a simple point on the curve define by "curve"
      val:= constant(f)
      ^zero?(val) => [0,val,f,curve]
      sTrCurve:=strictTransform(curve,1)
      slp:=intCoord sTrCurve  
      multPtf:Integer:= localMultiplicity(f)  pretend Integer 
      sTrFnc:=strictTransform(f,multPtf pretend NNI)
      newCurve:=translate(sTrCurve,slp)
      f2:=translate(sTrFnc,slp)
      val:= constant(f2)
      [multPtf, val, f2, newCurve]

    paramAtOrigin(f:UPUP,curve:UPUP,ex:Integer)== delay
      -- this function must be
      -- called for parametrization a the origin
      u:=f
      zero?(u) => 0
      tt:=u exquo curve 
      ^(tt case "failed") => 0
      firstTerm:=valuationAndMore(u,curve)
      od:=firstTerm.ord    
      coef:=firstTerm.value
      newU:=firstTerm.fnc - monomial(monomial(coef,0)$UP,0)$UPUP
      newCurve:=firstTerm.crv
      series(od+ex,coef,paramAtOrigin(newU,newCurve,ex+od))

    localize(f:PolyRing,pt:ProjPt,curve:PolyRing,nV:Integer)==
      curveT:=translateToOrigin(curve,pt,nV)
      ft:=translateToOrigin(f,pt,nV)
      fm:=minimalForm(curveT)
      zero?(d:=totalDegree(fm)$PackPoly) => _
        error "the point is not on the curve"
      ^one?(d) => error "the point is singular"
      subChart:=[i for i in 1..#symb | ^(i= (nV pretend PI))]
      cf1:=degOneCoef(fm,(subChart.1) pretend PI)
      cf2:=degOneCoef(fm,(subChart.2) pretend PI)
      crt:List(Integer)
      sc:List(Integer):=[(i pretend Integer) for i in subChart]
      zero?(cf1) =>
        crt:=concat(sc,nV)
        [ft,curveT,crt]
      zero?(cf2) =>
        crt:=concat(reverse(sc),nV)
        [ft,curveT,crt]
      deg1:=degree(curveT,listVar(subChart.1))
      deg2:=degree(curveT,listVar(subChart.2))
      deg1 > deg2 =>
        crt:=concat(sc,nV)
        [ft,curveT,crt]
      crt:=concat(reverse(sc),nV)
      [ft,curveT,crt]

    localize2(f:PolyRing,pt:ProjPt,curve:PolyRing,nV:Integer)==
      recBlowUp:=localize(f,pt,curve,nV)
      f2:=coerceToUPUP(recBlowUp.fnc,recBlowUp.chart)
      curve2:=coerceToUPUP(recBlowUp.crv,recBlowUp.chart)
      [f2,curve2]