This file is indexed.

/usr/share/axiom-20170501/src/algebra/LPEFRAC.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
)abbrev package LPEFRAC LinearPolynomialEquationByFractions
++ Author: James Davenport
++ Description:
++ Given a PolynomialFactorizationExplicit ring, this package
++ provides a defaulting rule for the \spad{solveLinearPolynomialEquation}
++ operation, by moving into the field of fractions, and solving it there
++ via the \spad{multiEuclidean} operation.

LinearPolynomialEquationByFractions(R) : SIG == CODE where
  R : PolynomialFactorizationExplicit

  SIG ==> with

    solveLinearPolynomialEquationByFractions: ( _
           List SparseUnivariatePolynomial R, _
           SparseUnivariatePolynomial R) ->   _
           Union(List SparseUnivariatePolynomial R, "failed")
      ++ solveLinearPolynomialEquationByFractions([f1, ..., fn], g)
      ++ (where the fi are relatively prime to each other)
      ++ returns a list of ai such that
      ++ \spad{g/prod fi = sum ai/fi}
      ++ or returns "failed" if no such exists.

  CODE ==> add

    SupR ==> SparseUnivariatePolynomial R
    F ==> Fraction R
    SupF ==> SparseUnivariatePolynomial F
    import UnivariatePolynomialCategoryFunctions2(R,SupR,F,SupF)
    lp : List SupR
    pp: SupR
    pF: SupF

    pullback : SupF -> Union(SupR,"failed")
    pullback(pF) ==
      pF = 0 => 0
      c:=retractIfCan leadingCoefficient pF
      c case "failed" => "failed"
      r:=pullback reductum pF
      r case "failed" => "failed"
      monomial(c,degree pF) + r

    solveLinearPolynomialEquationByFractions(lp,pp) ==
      lpF:List SupF:=[map((x:R):F +-> x@R::F,u) for u in lp]
      pF:SupF:=map((x:R):F +-> x::F,pp)
      ans:= solveLinearPolynomialEquation(lpF,pF)$F
      ans case "failed" => "failed"
      [(vv:= pullback v;
        vv case "failed" => return "failed";
         vv)
          for v in ans]