This file is indexed.

/usr/share/axiom-20170501/src/algebra/MAMA.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
)abbrev package MAMA MatrixManipulation
++ Author: Raoul Bourquin
++ Date Created: 17 November 2012
++ Date Last Updated: 1 December 2012
++ Description:
++ Some functions for manipulating (dense) matrices.
++ Supported are various kinds of slicing, splitting and stacking of 
++ matrices. The functions resemble operations often used in numerical 
++ linear algebra algorithms.

MatrixManipulation(R, Row, Col, M) : SIG == CODE where
  R : Field
  Row : FiniteLinearAggregate R
  Col : FiniteLinearAggregate R
  M : MatrixCategory(R, Row, Col)

  I ==> Integer
  PI ==> PositiveInteger
  LI ==> List I
  SI ==> Segment I
  LPI ==> List PI
  SPI ==> Segment PI

  SIG ==> with

    -- Slicing matrices

    -- How to call aRow, aColumn? Name clashed with usual row, column
    -- Package call is ugly because of many parameters of MAMA

    element : (M, PI, PI) -> M
      ++ \spad{element} returns a single element out of a matrix.
      ++ The element is put into a one by one matrix.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X element(M,2,2)

    aRow : (M, PI) -> M
      ++ \spad{aRow} returns a single row out of a matrix.
      ++ The row is put into a one by N matrix.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X aRow(M, 1)
      ++X aRow(M, 2)

    rows : (M, LPI) -> M
      ++ \spad{rows} returns several rows out of a matrix.
      ++ The rows are stacked into a matrix.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X rows(M, [1,2])
      ++X rows(M, [3,2])

    rows : (M, SPI) -> M
      ++ \spad{rows} returns several rows out of a matrix.
      ++ The rows are stacked into a matrix.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X rows(M, 2..3)

    aColumn : (M, PI) -> M
      ++ \spad{aColumn} returns a single column out of a matrix.
      ++ The column is put into a one by N matrix.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X aColumn(M, 2)

    columns : (M, LPI) -> M
      ++ \spad{columns} returns several columns out of a matrix.
      ++ The columns are stacked into a matrix.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X columns(M, [1,2])
      ++X columns(M, [3,2])

    columns : (M, SPI) -> M
      ++ \spad{columns} returns several columns out of a matrix.
      ++ The columns are stacked into a matrix.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X columns(M, 1..2)

    subMatrix : (M, LPI, LPI) -> M
      ++ \spad{subMatrix} returns several elements out of a matrix.
      ++ The elements are stacked into a submatrix.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X subMatrix(M, [1,2],[1,2])
      ++X subMatrix(M, [1,3],[1,3])

    subMatrix : (M, SPI, SPI) -> M
      ++ \spad{subMatrix} returns several elements out of a matrix.
      ++ The elements are stacked into a submatrix.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X subMatrix(M, 1..2,2..3)

    diagonalMatrix : (M, I) -> M
      ++ \spad{diagonalMatrix} returns a diagonal out of a matrix.
      ++ The diagonal is put into a matrix of same shape as the
      ++ original one. Positive integer arguments select upper
      ++ off-diagonals, negative ones lower off-diagonals.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X diagonalMatrix(M, 1)
      ++X diagonalMatrix(M, 2)
      ++X diagonalMatrix(M, -1)

    diagonalMatrix : M -> M
      ++ \spad{diagonalMatrix} returns the main diagonal out of
      ++ a matrix. The diagonal is put into a matrix of same shape
      ++ as the original one.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X diagonalMatrix(M)

    bandMatrix : (M, LI) -> M
      ++ \spad{bandMatrix} returns multiple diagonals out of a matrix.
      ++ The diagonals are put into a matrix of same shape as the
      ++ original one. Positive integer arguments select upper
      ++ off-diagonals, negative ones lower off-diagonals.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X bandMatrix(M, [-1,1])
      ++X bandMatrix(M, [-1,0,1])

    bandMatrix : (M, SI) -> M
      ++ \spad{bandMatrix} returns multiple diagonals out of a matrix.
      ++ The diagonals are put into a matrix of same shape as the
      ++ original one. Positive integer arguments select upper
      ++ off-diagonals, negative ones lower off-diagonals.
      ++
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X bandMatrix(M, -1..1)

    -- Stacking matrices

    horizConcat : (List M) -> M
      ++ \spad{horizConcat} concatenates matrices column wise.
      ++
      ++X A := matrix([[a]])
      ++X B := matrix([[b]])
      ++X C := matrix([[c]])
      ++X A12 := horizConcat([A,B,C])

    vertConcat : (List M) -> M
      ++ \spad{vertConcat} concatenates matrices row wise.
      ++
      ++X A := matrix([[a]])
      ++X B := matrix([[b]])
      ++X C := matrix([[c]])
      ++X A21 := vertConcat([A,B,C])

    blockConcat : (List List M) -> M
      ++ \spad{blockConcat} concatenates matrices row and
      ++ column wise, building a block matrix. The order
      ++ is row major as in \spad{matrix}.
      ++
      ++X A := matrix([[a]])
      ++X B := matrix([[b]])
      ++X C := matrix([[c]])
      ++X A11 := element(M, 3,3)
      ++X A12 := horizConcat([A,B,C])
      ++X A21 := vertConcat([A,B,C])
      ++X M := matrix([[a,b,c],[d,e,f],[g,h,i]])
      ++X E := blockConcat([[A11,A12],[A21,M]])
      ++X t1 := blockSplit(E, 4, [2,2])
      ++X t2 := blockConcat t1
      ++X zero?(E-t2)
      ++X t3 := blockSplit(E, [1,2,1], [2,2])
      ++X t4 := blockConcat t3
      ++X zero?(E-t4)

    -- Splitting matrices

    vertSplit : (M, PI) -> List M
      ++ \spad{vertSplit} splits a matrix into multiple
      ++ submatrices row wise.
      ++
      ++X E := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]])
      ++X t1:= vertSplit(E, 2)

    vertSplit : (M, LPI) -> List M
      ++ \spad{vertSplit} splits a matrix into multiple
      ++ submatrices row wise.
      ++
      ++X E := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]])
      ++X t1:= vertSplit(E, [1,2,1])

    horizSplit : (M, PI) -> List M
      ++ \spad{horizSplit} splits a matrix into multiple
      ++ submatrices column wise.
      ++
      ++X E := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]])
      ++X t1:= horizSplit(E, 2)

    horizSplit : (M, LPI) -> List M
      ++ \spad{horizSplit} splits a matrix into multiple
      ++ submatrices column wise.
      ++
      ++X E := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]])
      ++X t1:= horizSplit(E, [2,2])
      ++X t2:= horizSplit(E, [1,2,1])

    blockSplit : (M, PI, PI) -> List List M
      ++ \spad{blockSplit} splits a matrix into multiple
      ++ submatrices row and column wise, dividing
      ++ a matrix into blocks.
      ++
      ++X E := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]])
      ++X t1:= blockSplit(E,2,2)

    blockSplit : (M, LPI, PI) -> List List M
      ++ \spad{blockSplit} splits a matrix into multiple
      ++ submatrices row and column wise, dividing
      ++ a matrix into blocks.
      ++
      ++X E := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]])
      ++X t1:= blockSplit(E, [2,1,1], 2)

    blockSplit : (M, PI, LPI) -> List List M
      ++ \spad{blockSplit} splits a matrix into multiple
      ++ submatrices row and column wise, dividing
      ++ a matrix into blocks.
      ++
      ++X E := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]])
      ++X t1:= blockSplit(E, 4, [2,2])

    blockSplit : (M, LPI, LPI) -> List List M
      ++ \spad{blockSplit} splits a matrix into multiple
      ++ submatrices row and column wise, dividing
      ++ a matrix into blocks.
      ++
      ++X E := matrix([[i,a,b,c],[a,a,b,c],[b,d,e,f],[c,g,h,i]])
      ++X t1:= blockSplit(E, [1,2,1], [2,2])

  CODE ==> add

    minr ==> minRowIndex
    maxr ==> maxRowIndex
    minc ==> minColIndex
    maxc ==> maxColIndex

    -- Custom function to expand Segment(PositiveInteger) into 
    -- List(PositiveInteger). This operation is not supported by the 
    -- overly restrictive library implementation.
    expand(spi : SPI) : LPI ==
        lr := empty()$LPI
        l : PI := lo spi
        h : PI := hi spi
        inc : I := incr spi
        zero? inc => error "Cannot expand a segment with an increment of zero"
        if inc > 0 then
          while l <= h repeat
            lr := concat(l, lr)
            l := (l + inc) pretend PI
        else
          while l >= h repeat
            lr := concat(l, lr)
            l := (l + inc) pretend PI
        reverse! lr

    element(A, r, c) ==
      matrix([[A(r,c)]])

    aRow(A:M, r:PI) : M ==
      subMatrix(A, r, r, minc A, maxc A)

    rows(A:M, lst:LPI) : M ==
      ls := [aRow(A, r) for r in lst]
      reduce(vertConcat, ls)

    rows(A:M, si:SPI) : M ==
      rows(A, expand(si))

    aColumn(A:M, c:PI) : M ==
      subMatrix(A, minr A, maxr A, c, c)

    columns(A:M, lst:LPI) : M ==
      ls := [aColumn(A,c) for c in lst]
      reduce(horizConcat, ls)

    columns(A:M, si:SPI) : M ==
      columns(A, expand(si))

    diagonalMatrix(A, n) ==
      nr := nrows(A)
      nc := ncols(A)
      n > (nc-1) => error "requested diagonal out of range"
      n < 0 and abs(n) > (nr-1) => error "requested diagonal out of range"
      B := zero(nr,nc)
      if n >= 0 then
        dl := min(nc-n, nr)
        sr := minr(A)
        sc := minc(A) + n
      else
        dl := min(nc, nr-abs(n))
        sr := minr(A) + abs(n)
        sc := minc(A)
      for i in 0..(dl-1) repeat
        qsetelt!(B, sr+i, sc+i, A(sr+i, sc+i))
      B

    diagonalMatrix(A) ==
      diagonalMatrix(A, 0)

    bandMatrix(A:M, ln:LI) : M ==
      -- Really inefficient
      reduce("+", [diagonalMatrix(A,d) for d in ln])

    bandMatrix(A:M, si:SI) : M ==
      bandMatrix(A, expand(si))

    subMatrix(A:M, lr:LPI, lc:LPI) : M ==
      -- Really inefficient
      lle := [[ element(A,r,c) for c in lc] for r in lr]
      blockConcat(lle)

    subMatrix(A:M, sr:SPI, sc:SPI) : M ==
      subMatrix(A, low sr, high sr, low sc, high sc)

    -- Stack matrices

    horizConcat(LA) ==
      reduce(horizConcat, LA)

    vertConcat(LA) ==
      reduce(vertConcat, LA)

    blockConcat(LLA: List List M) : M ==
      reduce(vertConcat, [reduce(horizConcat, LA) for LA in LLA])

    -- Split matrices

    vertSplit(A:M, r:PI) : List M ==
      dr := nrows(A) exquo r
      dr case "failed" => error "split does not result in an equal division"
      mir := minr A
      mic := minc A
      mac := maxc A
      [ subMatrix(A, mir+i*dr, mir+(i+1)*dr-1, mic, mac) for i in 0..(r-1) ]

    vertSplit(A:M, lr:LPI) : List M ==
      reduce("+", lr) ~= nrows(A) => _
          error "split does not result in proper partition"
      l : List PI := cons(1, scan(_+, lr, 1$PI)$ListFunctions2(PI,PI))
      mir := minr(A) -1   -- additional shift because l starts at 1
      mic := minc A
      mac := maxc A
      result := _
        [ subMatrix(A, mir+l(i-1), mir+l(i)-1, mic, mac) for i in 2..#l ]

    horizSplit(A:M, c:PI) : List M ==
      dc := ncols(A) exquo c
      dc case "failed" => error "split does not result in an equal division"
      mir := minr A
      mar := maxr A
      mic := minc A
      [ subMatrix(A, mir, mar, mic+i*dc, mic+(i+1)*dc-1) for i in 0..(c-1) ]

    horizSplit(A:M, lc:LPI) : List M ==
      reduce("+", lc) ~= ncols(A) => _
          error "split does not result in proper partition"
      l : List PI := cons(1, scan(_+, lc, 1$PI)$ListFunctions2(PI,PI))
      mir := minr A
      mar := maxr A
      mic := minc(A) -1   -- additional shift because l starts at 1
      result := _
         [ subMatrix(A, mir, mar, mic+l(i-1), mic+l(i)-1) for i in 2..#l ]

    blockSplit(A:M, nr:PI, nc:PI) : List List M ==
      [ horizSplit(X, nc) for X in vertSplit(A, nr) ]

    blockSplit(A:M, lr:LPI, nc:PI) : List List M ==
      [ horizSplit(X, nc) for X in vertSplit(A, lr) ]

    blockSplit(A:M, nr:PI, lc:LPI) : List List M ==
      [ horizSplit(X, lc) for X in vertSplit(A, nr) ]

    blockSplit(A:M, lr:LPI, lc:LPI) : List List M ==
      [ horizSplit(X, lc) for X in vertSplit(A, lr) ]