This file is indexed.

/usr/share/axiom-20170501/src/algebra/MATLIN.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
)abbrev package MATLIN MatrixLinearAlgebraFunctions
++ Author: Clifton J. Williamson, P.Gianni
++ Date Created: 13 November 1989
++ Date Last Updated: December 1992
++ Description:
++ \spadtype{MatrixLinearAlgebraFunctions} provides functions to compute
++ inverses and canonical forms.

MatrixLinearAlgebraFunctions(R,Row,Col,M) : SIG == CODE where
  R   : CommutativeRing
  Row : FiniteLinearAggregate R
  Col : FiniteLinearAggregate R
  M   : MatrixCategory(R,Row,Col)

  I ==> Integer

  SIG ==> with

    determinant : M -> R
      ++ \spad{determinant(m)} returns the determinant of the matrix m.
      ++ an error message is returned if the matrix is not square.

    minordet : M -> R
      ++ \spad{minordet(m)} computes the determinant of the matrix m using
      ++ minors. Error: if the matrix is not square.

    elRow1! : (M,I,I) -> M
      ++ elRow1!(m,i,j) swaps rows i and j of matrix m : elementary operation
      ++ of first kind

    elRow2! : (M,R,I,I) -> M
      ++ elRow2!(m,a,i,j)  adds to row i a*row(m,j) : elementary operation of
      ++ second kind. (i ^=j)

    elColumn2! : (M,R,I,I) -> M
      ++ elColumn2!(m,a,i,j)  adds to column i a*column(m,j) : elementary
      ++ operation of second kind. (i ^=j)

    if R has IntegralDomain then

      rank : M -> NonNegativeInteger
        ++ \spad{rank(m)} returns the rank of the matrix m.

      nullity : M -> NonNegativeInteger
        ++ \spad{nullity(m)} returns the mullity of the matrix m. This is
        ++ the dimension of the null space of the matrix m.

      nullSpace : M -> List Col
        ++ \spad{nullSpace(m)} returns a basis for the null space of the
        ++ matrix m.

      fractionFreeGauss! : M -> M
        ++ \spad{fractionFreeGauss(m)} performs the fraction
        ++ free gaussian  elimination on the matrix m.

      invertIfCan : M -> Union(M,"failed")
        ++ \spad{invertIfCan(m)} returns the inverse of m over R

      adjoint : M -> Record(adjMat:M, detMat:R)
        ++ \spad{adjoint(m)} returns the ajoint matrix of m (the matrix
        ++ n such that m*n = determinant(m)*id) and the detrminant of m.

    if R has EuclideanDomain then

      rowEchelon : M -> M
        ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m.

      normalizedDivide : (R, R) -> Record(quotient:R, remainder:R)
        ++ normalizedDivide(n,d) returns a normalized quotient and
        ++ remainder such that consistently unique representatives
        ++ for the residue class are chosen, for example, positive remainders

    if R has Field then

      inverse : M -> Union(M,"failed")
        ++ \spad{inverse(m)} returns the inverse of the matrix.
        ++ If the matrix is not invertible, "failed" is returned.
        ++ Error: if the matrix is not square.

  CODE ==> add

    rowAllZeroes?: (M,I) -> Boolean
    rowAllZeroes?(x,i) ==
      -- determines if the ith row of x consists only of zeroes
      -- internal function: no check on index i
      for j in minColIndex(x)..maxColIndex(x) repeat
        qelt(x,i,j) ^= 0 => return false
      true

    colAllZeroes?: (M,I) -> Boolean
    colAllZeroes?(x,j) ==
      -- determines if the ith column of x consists only of zeroes
      -- internal function: no check on index j
      for i in minRowIndex(x)..maxRowIndex(x) repeat
        qelt(x,i,j) ^= 0 => return false
      true

    minorDet:(M,I,List I,I,PrimitiveArray(Union(R,"uncomputed")))-> R
    minorDet(x,m,l,i,v) ==
      z := v.m
      z case R => z
      ans : R := 0; rl : List I := nil()
      j := first l; l := rest l; pos := true
      minR := minRowIndex x; minC := minColIndex x;
      repeat
        if qelt(x,j + minR,i + minC) ^= 0 then
          ans :=
            md := minorDet(x,m - 2**(j :: NonNegativeInteger),_
                           concat_!(reverse rl,l),i + 1,v) *_
                           qelt(x,j + minR,i + minC)
            pos => ans + md
            ans - md
        null l =>
          v.m := ans
          return ans
        pos := not pos; rl := cons(j,rl); j := first l; l := rest l

    minordet x ==
      (ndim := nrows x) ^= (ncols x) =>
        error "determinant: matrix must be square"
      -- minor expansion with (s---loads of) memory
      n1 : I := ndim - 1
      v : PrimitiveArray(Union(R,"uncomputed")) :=
           new((2**ndim - 1) :: NonNegativeInteger,"uncomputed")
      minR := minRowIndex x; maxC := maxColIndex x
      for i in 0..n1 repeat
        qsetelt_!(v,(2**i - 1),qelt(x,i + minR,maxC))
      minorDet(x, 2**ndim - 2, [i for i in 0..n1], 0, v)

       -- elementary operation of first kind: exchange two rows --
    elRow1!(m:M,i:I,j:I) : M ==
      vec:=row(m,i)
      setRow!(m,i,row(m,j))
      setRow!(m,j,vec)
      m

             -- elementary operation of second kind: add to row i--
                         -- a*row j  (i^=j) --
    elRow2!(m : M,a:R,i:I,j:I) : M ==
      vec:= map((r1:R):R +-> a*r1,row(m,j))
      vec:=map("+",row(m,i),vec)
      setRow!(m,i,vec)
      m
             -- elementary operation of second kind: add to column i --
                           -- a*column j (i^=j) --

    elColumn2!(m : M,a:R,i:I,j:I) : M ==
      vec:= map((r1:R):R +-> a*r1,column(m,j))
      vec:=map("+",column(m,i),vec)
      setColumn!(m,i,vec)
      m

    if R has IntegralDomain then
      -- Fraction-Free Gaussian Elimination

      fractionFreeGauss! x  ==
        (ndim := nrows x) = 1 => x
        ans := b := 1$R
        minR := minRowIndex x; maxR := maxRowIndex x
        minC := minColIndex x; maxC := maxColIndex x
        i := minR
        for j in minC..maxC repeat
          if qelt(x,i,j) = 0 then -- candidate for pivot = 0
            rown := minR - 1
            for k in (i+1)..maxR repeat
              if qelt(x,k,j) ^= 0 then
                 rown := k -- found a pivot
                 leave
            if rown > minR - 1 then
               swapRows_!(x,i,rown)
               ans := -ans
          (c := qelt(x,i,j)) = 0 =>  "next j" -- try next column
          for k in (i+1)..maxR repeat
            if qelt(x,k,j) = 0 then
              for l in (j+1)..maxC repeat
                qsetelt_!(x,k,l,(c * qelt(x,k,l) exquo b) :: R)
            else
              pv := qelt(x,k,j)
              qsetelt_!(x,k,j,0)
              for l in (j+1)..maxC repeat
                val := c * qelt(x,k,l) - pv * qelt(x,i,l)
                qsetelt_!(x,k,l,(val exquo b) :: R)
          b := c
          (i := i+1)>maxR => leave
        if ans~=1 then
          lasti := i-1
          for j in 1..maxC repeat x(lasti, j) := -x(lasti,j)
        x

      --
      lastStep(x:M)  : M ==
        ndim := nrows x
        minR := minRowIndex x; maxR := maxRowIndex x
        minC := minColIndex x; maxC := minC+ndim -1
        exCol:=maxColIndex x
        det:=x(maxR,maxC)
        maxR1:=maxR-1
        maxC1:=maxC+1
        minC1:=minC+1
        iRow:=maxR
        iCol:=maxC-1
        for i in maxR1..1 by -1 repeat
          for j in maxC1..exCol repeat
            ss:=+/[x(i,iCol+k)*x(i+k,j) for k in 1..(maxR-i)]
            x(i,j) := _exquo((det * x(i,j) - ss),x(i,iCol))::R
          iCol:=iCol-1
        subMatrix(x,minR,maxR,maxC1,exCol)

      invertIfCan(y) ==
        (nr:=nrows y) ^= (ncols y) =>
            error "invertIfCan: matrix must be square"
        adjRec := adjoint y
        (den:=recip(adjRec.detMat)) case "failed" => "failed"
        den::R * adjRec.adjMat

      adjoint(y) ==
        (nr:=nrows y) ^= (ncols y) => error "adjoint: matrix must be square"
        maxR := maxRowIndex y
        maxC := maxColIndex y
        x := horizConcat(copy y,scalarMatrix(nr,1$R))
        ffr:= fractionFreeGauss!(x)
        det:=ffr(maxR,maxC)
        [lastStep(ffr),det]


    if R has Field then

      VR      ==> Vector R
      IMATLIN ==> InnerMatrixLinearAlgebraFunctions(R,Row,Col,M)
      MMATLIN ==> InnerMatrixLinearAlgebraFunctions(R,VR,VR,Matrix R)
      FLA2    ==> FiniteLinearAggregateFunctions2(R, VR, R, Col)
      MAT2    ==> MatrixCategoryFunctions2(R,Row,Col,M,R,VR,VR,Matrix R)

      rowEchelon  y == rowEchelon(y)$IMATLIN

      rank        y == rank(y)$IMATLIN

      nullity     y == nullity(y)$IMATLIN

      determinant y == determinant(y)$IMATLIN

      inverse     y == inverse(y)$IMATLIN

      if Col has shallowlyMutable then

        nullSpace y == nullSpace(y)$IMATLIN

      else

        nullSpace y ==
          [map((r1:R):R +-> r1, v)$FLA2
            for v in nullSpace(map((r2:R):R +-> r2, y)$MAT2)$MMATLIN]

    else if R has IntegralDomain then

      QF     ==> Fraction R
      Row2   ==> Vector QF
      Col2   ==> Vector QF
      M2     ==> Matrix QF
      IMATQF ==> InnerMatrixQuotientFieldFunctions(R,Row,Col,M,QF,Row2,Col2,M2)

      nullSpace m == nullSpace(m)$IMATQF

      determinant y ==
        (nrows y) ^= (ncols y) => error "determinant: matrix must be square"
        fm:=fractionFreeGauss!(copy y)
        fm(maxRowIndex fm,maxColIndex fm)

      rank x ==
        y :=
          (rk := nrows x) > (rh := ncols x) =>
              rk := rh
              transpose x
          copy x
        y := fractionFreeGauss! y
        i := maxRowIndex y
        while rk > 0 and rowAllZeroes?(y,i) repeat
          i := i - 1
          rk := (rk - 1) :: NonNegativeInteger
        rk :: NonNegativeInteger

      nullity x == (ncols x - rank x) :: NonNegativeInteger

      if R has EuclideanDomain then

        if R has IntegerNumberSystem then

            normalizedDivide(n:R, d:R):Record(quotient:R, remainder:R) ==
               qr := divide(n, d)
               qr.remainder >= 0 => qr
               d > 0 =>
                  qr.remainder := qr.remainder + d
                  qr.quotient := qr.quotient - 1
                  qr
               qr.remainder := qr.remainder - d
               qr.quotient := qr.quotient + 1
               qr

        else

            normalizedDivide(n:R, d:R):Record(quotient:R, remainder:R) ==
               divide(n, d)

        rowEchelon y ==
          x := copy y
          minR := minRowIndex x; maxR := maxRowIndex x
          minC := minColIndex x; maxC := maxColIndex x
          n := minR - 1
          i := minR
          for j in minC..maxC repeat
            if i > maxR then leave x
            n := minR - 1
            xnj: R
            for k in i..maxR repeat
              if not zero?(xkj:=qelt(x,k,j)) and ((n = minR - 1) _
                     or sizeLess?(xkj,xnj)) then
                n := k
                xnj := xkj
            n = minR - 1 => "next j"
            swapRows_!(x,i,n)
            for k in (i+1)..maxR repeat
              qelt(x,k,j) = 0 => "next k"
              aa := extendedEuclidean(qelt(x,i,j),qelt(x,k,j))
              (a,b,d) := (aa.coef1,aa.coef2,aa.generator)
              b1 := (qelt(x,i,j) exquo d) :: R
              a1 := (qelt(x,k,j) exquo d) :: R
              -- a*b1+a1*b = 1
              for k1 in (j+1)..maxC repeat
                val1 := a * qelt(x,i,k1) + b * qelt(x,k,k1)
                val2 := -a1 * qelt(x,i,k1) + b1 * qelt(x,k,k1)
                qsetelt_!(x,i,k1,val1); qsetelt_!(x,k,k1,val2)
              qsetelt_!(x,i,j,d); qsetelt_!(x,k,j,0)

            un := unitNormal qelt(x,i,j)
            qsetelt_!(x,i,j,un.canonical)
            if un.associate ^= 1 then for jj in (j+1)..maxC repeat
                qsetelt_!(x,i,jj,un.associate * qelt(x,i,jj))

            xij := qelt(x,i,j)
            for k in minR..(i-1) repeat
              qelt(x,k,j) = 0 => "next k"
              qr := normalizedDivide(qelt(x,k,j), xij)
              qsetelt_!(x,k,j,qr.remainder)
              for k1 in (j+1)..maxC repeat
                qsetelt_!(x,k,k1,qelt(x,k,k1) - qr.quotient * qelt(x,i,k1))
            i := i + 1
          x

    else determinant x == minordet x