This file is indexed.

/usr/share/axiom-20170501/src/algebra/MATSTOR.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
)abbrev package MATSTOR StorageEfficientMatrixOperations
++ Author: Clifton J. Williamson
++ Date Created: 18 July 1990
++ Date Last Updated: 18 July 1990
++ Description:
++ This package provides standard arithmetic operations on matrices.
++ The functions in this package store the results of computations
++ in existing matrices, rather than creating new matrices.  This
++ package works only for matrices of type Matrix and uses the
++ internal representation of this type.

StorageEfficientMatrixOperations(R) : SIG == CODE where
  R : Ring

  M   ==> Matrix R
  NNI ==> NonNegativeInteger
  ARR ==> PrimitiveArray R
  REP ==> PrimitiveArray PrimitiveArray R
 
  SIG ==> with

    copy_! : (M,M) -> M
      ++ \spad{copy!(c,a)} copies the matrix \spad{a} into the matrix c.
      ++ Error: if \spad{a} and c do not have the same
      ++ dimensions.

    plus_! : (M,M,M) -> M
      ++ \spad{plus!(c,a,b)} computes the matrix sum \spad{a + b} and stores the
      ++ result in the matrix c.
      ++ Error: if \spad{a}, b, and c do not have the same dimensions.

    minus_! : (M,M) -> M
      ++ \spad{minus!(c,a)} computes \spad{-a} and stores the result in the
      ++ matrix c.
      ++ Error: if a and c do not have the same dimensions.

    minus_! : (M,M,M) -> M
      ++ \spad{!minus!(c,a,b)} computes the matrix difference \spad{a - b}
      ++ and stores the result in the matrix c.
      ++ Error: if \spad{a}, b, and c do not have the same dimensions.

    leftScalarTimes_! : (M,R,M) -> M
      ++ \spad{leftScalarTimes!(c,r,a)} computes the scalar product
      ++ \spad{r * a} and stores the result in the matrix c.
      ++ Error: if \spad{a} and c do not have the same dimensions.

    rightScalarTimes_! : (M,M,R) -> M
      ++ \spad{rightScalarTimes!(c,a,r)} computes the scalar product
      ++ \spad{a * r} and stores the result in the matrix c.
      ++ Error: if \spad{a} and c do not have the same dimensions.

    times_! : (M,M,M) -> M
      ++ \spad{times!(c,a,b)} computes the matrix product \spad{a * b}
      ++ and stores the result in the matrix c.
      ++ Error: if \spad{a}, b, and c do not have
      ++ compatible dimensions.

    power_! : (M,M,M,M,NNI) -> M
      ++ \spad{power!(a,b,c,m,n)} computes m ** n and stores the result in
      ++ \spad{a}. The matrices b and c are used to store intermediate results.
      ++ Error: if \spad{a}, b, c, and m are not square
      ++ and of the same dimensions.
 
    "**" : (M,NNI) -> M
      ++ \spad{x ** n} computes the n-th power
      ++ of a square matrix. The power n is assumed greater than 1.
 
  CODE ==> add
 
    rep : M -> REP
    rep m == m pretend REP
 
    copy_!(c,a) ==
      m := nrows a; n := ncols a
      not((nrows c) = m and (ncols c) = n) =>
        error "copy!: matrices of incompatible dimensions"
      aa := rep a; cc := rep c
      for i in 0..(m-1) repeat
        aRow := qelt(aa,i); cRow := qelt(cc,i)
        for j in 0..(n-1) repeat
          qsetelt_!(cRow,j,qelt(aRow,j))
      c
 
    plus_!(c,a,b) ==
      m := nrows a; n := ncols a
      not((nrows b) = m and (ncols b) = n) =>
        error "plus!: matrices of incompatible dimensions"
      not((nrows c) = m and (ncols c) = n) =>
        error "plus!: matrices of incompatible dimensions"
      aa := rep a; bb := rep b; cc := rep c
      for i in 0..(m-1) repeat
        aRow := qelt(aa,i); bRow := qelt(bb,i); cRow := qelt(cc,i)
        for j in 0..(n-1) repeat
          qsetelt_!(cRow,j,qelt(aRow,j) + qelt(bRow,j))
      c
 
    minus_!(c,a) ==
      m := nrows a; n := ncols a
      not((nrows c) = m and (ncols c) = n) =>
        error "minus!: matrices of incompatible dimensions"
      aa := rep a; cc := rep c
      for i in 0..(m-1) repeat
        aRow := qelt(aa,i); cRow := qelt(cc,i)
        for j in 0..(n-1) repeat
          qsetelt_!(cRow,j,-qelt(aRow,j))
      c
 
    minus_!(c,a,b) ==
      m := nrows a; n := ncols a
      not((nrows b) = m and (ncols b) = n) =>
        error "minus!: matrices of incompatible dimensions"
      not((nrows c) = m and (ncols c) = n) =>
        error "minus!: matrices of incompatible dimensions"
      aa := rep a; bb := rep b; cc := rep c
      for i in 0..(m-1) repeat
        aRow := qelt(aa,i); bRow := qelt(bb,i); cRow := qelt(cc,i)
        for j in 0..(n-1) repeat
          qsetelt_!(cRow,j,qelt(aRow,j) - qelt(bRow,j))
      c
 
    leftScalarTimes_!(c,r,a) ==
      m := nrows a; n := ncols a
      not((nrows c) = m and (ncols c) = n) =>
        error "leftScalarTimes!: matrices of incompatible dimensions"
      aa := rep a; cc := rep c
      for i in 0..(m-1) repeat
        aRow := qelt(aa,i); cRow := qelt(cc,i)
        for j in 0..(n-1) repeat
          qsetelt_!(cRow,j,r * qelt(aRow,j))
      c
 
    rightScalarTimes_!(c,a,r) ==
      m := nrows a; n := ncols a
      not((nrows c) = m and (ncols c) = n) =>
        error "rightScalarTimes!: matrices of incompatible dimensions"
      aa := rep a; cc := rep c
      for i in 0..(m-1) repeat
        aRow := qelt(aa,i); cRow := qelt(cc,i)
        for j in 0..(n-1) repeat
          qsetelt_!(cRow,j,qelt(aRow,j) * r)
      c
 
    copyCol_!: (ARR,REP,Integer,Integer) -> ARR
    copyCol_!(bCol,bb,j,n1) ==
      for i in 0..n1 repeat qsetelt_!(bCol,i,qelt(qelt(bb,i),j))
 
    times_!(c,a,b) ==
      m := nrows a; n := ncols a; p := ncols b
      not((nrows b) = n and (nrows c) = m and (ncols c) = p) =>
        error "times!: matrices of incompatible dimensions"
      aa := rep a; bb := rep b; cc := rep c
      bCol : ARR := new(n,0)
      m1 := (m :: Integer) - 1; n1 := (n :: Integer) - 1
      for j in 0..(p-1) repeat
        copyCol_!(bCol,bb,j,n1)
        for i in 0..m1 repeat
          aRow := qelt(aa,i); cRow := qelt(cc,i)
          sum : R := 0
          for k in 0..n1 repeat
            sum := sum + qelt(aRow,k) * qelt(bCol,k)
          qsetelt_!(cRow,j,sum)
      c
 
    power_!(a,b,c,m,p) ==
      mm := nrows a; nn := ncols a
      not(mm = nn) =>
        error "power!: matrix must be square"
      not((nrows b) = mm and (ncols b) = nn) =>
        error "power!: matrices of incompatible dimensions"
      not((nrows c) = mm and (ncols c) = nn) =>
        error "power!: matrices of incompatible dimensions"
      not((nrows m) = mm and (ncols m) = nn) =>
        error "power!: matrices of incompatible dimensions"
      flag := false
      copy_!(b,m)
      repeat
        if odd? p then
          flag =>
            times_!(c,b,a)
            copy_!(a,c)
          flag := true
          copy_!(a,b)
        (p = 1) => return a
        p := p quo 2
        times_!(c,b,b)
        copy_!(b,c)
 
    m ** n ==
      not square? m => error "**: matrix must be square"
      a := copy m; b := copy m; c := copy m
      power_!(a,b,c,m,n)