This file is indexed.

/usr/share/axiom-20170501/src/algebra/MDDFACT.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
)abbrev package MDDFACT ModularDistinctDegreeFactorizer
++ Author: Barry Trager
++ Date Last Updated: 20.9.95 (JHD)
++ Description:
++ This package supports factorization and gcds
++ of univariate polynomials over the integers modulo different
++ primes. The inputs are given as polynomials over the integers
++ with the prime passed explicitly as an extra argument.

ModularDistinctDegreeFactorizer(U) : SIG == CODE where
  U : UnivariatePolynomialCategory(Integer)

  I ==> Integer
  NNI ==> NonNegativeInteger
  PI ==> PositiveInteger
  V ==> Vector
  L ==> List
  DDRecord ==> Record(factor:EMR,degree:I)
  UDDRecord ==> Record(factor:U,degree:I)
  DDList ==> L DDRecord
  UDDList ==> L UDDRecord

  SIG ==> with

    gcd : (U,U,I) -> U
      ++ gcd(f1,f2,p) computes the gcd of the univariate polynomials
      ++ f1 and f2 modulo the integer prime p.

    linears : (U,I) -> U
      ++ linears(f,p) returns the product of all the linear factors
      ++ of f modulo p. Potentially incorrect result if f is not
      ++ square-free modulo p.

    factor : (U,I) -> L U
      ++ factor(f1,p) returns the list of factors of the univariate
      ++ polynomial f1 modulo the integer prime p.
      ++ Error: if f1 is not square-free modulo p.

    ddFact : (U,I) -> UDDList
      ++ ddFact(f,p) computes a distinct degree factorization of the
      ++ polynomial f modulo the prime p, such that each factor
      ++ is a product of irreducibles of the same degrees. The input
      ++ polynomial f is assumed to be square-free modulo p.

    separateFactors : (UDDList,I) -> L U
      ++ separateFactors(ddl, p) refines the distinct degree factorization
      ++ produced by ddFact to give a complete list of factors.

    exptMod : (U,I,U,I) -> U
      ++ exptMod(f,n,g,p) raises the univariate polynomial f to the nth
      ++ power modulo the polynomial g and the prime p.

  CODE ==> add

    reduction(u:U,p:I):U ==
       zero? p => u
       map((i1:I):I +-> positiveRemainder(i1,p),u)

    merge(p:I,q:I):Union(I,"failed") ==
       p = q => p
       p = 0 => q
       q = 0 => p
       "failed"

    modInverse(c:I,p:I):I ==
        (extendedEuclidean(c,p,1)::Record(coef1:I,coef2:I)).coef1

    exactquo(u:U,v:U,p:I):Union(U,"failed") ==
        invlcv:=modInverse(leadingCoefficient v,p)
        r:=monicDivide(u,reduction(invlcv*v,p))
        reduction(r.remainder,p) ^=0 => "failed"
        reduction(invlcv*r.quotient,p)

    EMR := EuclideanModularRing(Integer,U,Integer,
                                reduction,merge,exactquo)

    probSplit2:(EMR,EMR,I) -> Union(List EMR,"failed")
    trace:(EMR,I,EMR) -> EMR
    ddfactor:EMR -> L EMR
    ddfact:EMR -> DDList
    sepFact1:DDRecord -> L EMR
    sepfact:DDList -> L EMR
    probSplit:(EMR,EMR,I) -> Union(L EMR,"failed")
    makeMonic:EMR -> EMR
    exptmod:(EMR,I,EMR) -> EMR

    lc(u:EMR):I == leadingCoefficient(u::U)

    degree(u:EMR):I == degree(u::U)

    makeMonic(u) == modInverse(lc(u),modulus(u)) * u

    i:I

    exptmod(u1,i,u2) ==
      i < 0 => error("negative exponentiation not allowed for exptMod")
      ans:= 1$EMR
      while i > 0 repeat
        if odd?(i) then ans:= (ans * u1) rem u2
        i:= i quo 2
        u1:= (u1 * u1) rem u2
      ans

    exptMod(a,i,b,q) ==
      ans:= exptmod(reduce(a,q),i,reduce(b,q))
      ans::U

    ddfactor(u) ==
      if (c:= lc(u)) ^= 1$I then u:= makeMonic(u)
      ans:= sepfact(ddfact(u))
      cons(c::EMR,[makeMonic(f) for f in ans | degree(f) > 0])

    gcd(u,v,q) == gcd(reduce(u,q),reduce(v,q))::U

    factor(u,q) ==
      v:= reduce(u,q)
      dv:= reduce(differentiate(u),q)
      degree gcd(v,dv) > 0 =>
        error("Modular factor: polynomial must be squarefree")
      ans:= ddfactor v
      [f::U for f in ans]

    ddfact(u) ==
      p:=modulus u
      w:= reduce(monomial(1,1)$U,p)
      m:= w
      d:I:= 1
      if (c:= lc(u)) ^= 1$I then u:= makeMonic u
      ans:DDList:= []
      repeat
        w:= exptmod(w,p,u)
        g:= gcd(w - m,u)
        if degree g > 0 then
          g:= makeMonic(g)
          ans:= [[g,d],:ans]
          u:= (u quo g)
        degree(u) = 0 => return [[c::EMR,0$I],:ans]
        d:= d+1
        d > (degree(u):I quo 2) =>
               return [[c::EMR,0$I],[u,degree(u)],:ans]

    ddFact(u,q) ==
      ans:= ddfact(reduce(u,q))
      [[(dd.factor)::U,dd.degree]$UDDRecord for dd in ans]$UDDList

    linears(u,q) == 
       uu:=reduce(u,q)
       m:= reduce(monomial(1,1)$U,q)
       gcd(exptmod(m,q,uu)-m,uu)::U

    sepfact(factList) ==
      "append"/[sepFact1(f) for f in factList]

    separateFactors(uddList,q) ==
      ans:= sepfact [[reduce(udd.factor,q),udd.degree]$DDRecord for
        udd in uddList]$DDList
      [f::U for f in ans]

    decode(s:Integer, p:Integer, x:U):U ==
      s<p => s::U
      qr := divide(s,p)
      qr.remainder :: U + x*decode(qr.quotient, p, x)

    sepFact1(f) ==
      u:= f.factor
      p:=modulus u
      (d := f.degree) = 0 => [u]
      if (c:= lc(u)) ^= 1$I then u:= makeMonic(u)
      d = (du := degree(u)) => [u]
      ans:L EMR:= []
      x:U:= monomial(1,1)
      -- for small primes find linear factors by exhaustion
      d=1 and p < 1000  =>
        for i in 0.. while du > 0 repeat
          if u(i::U) = 0 then
            ans := cons(reduce(x-(i::U),p),ans)
            du := du-1
        ans 
      y:= x
      s:I:= 0
      ss:I := 1
      stack:L EMR:= [u]
      until null stack repeat
        t:= reduce(((s::U)+x),p)
        if not ((flist:= probSplit(first stack,t,d)) case "failed") then
          stack:= rest stack
          for fact in flist repeat
            f1:= makeMonic(fact)
            (df1:= degree(f1)) = 0 => nil
            df1 > d => stack:= [f1,:stack]
            ans:= [f1,:ans]
        p = 2 =>
          ss:= ss + 1
          x := y * decode(ss, p, y)
        s:= s+1
        s = p =>
          s:= 0
          ss := ss + 1
          x:= y * decode(ss, p, y)
          not (leadingCoefficient(x) = 1) =>
              ss := p ** degree x
              x:= y ** (degree(x) + 1)
      [c * first(ans),:rest(ans)]

    probSplit(u,t,d) ==
      (p:=modulus(u)) = 2 => probSplit2(u,t,d)
      f1:= gcd(u,t)
      r:= ((p**(d:NNI)-1) quo 2):NNI
      n:= exptmod(t,r,u)
      f2:= gcd(u,n + 1)
      (g:= f1 * f2) = 1 => "failed"
      g = u => "failed"
      [f1,f2,(u quo g)]

    probSplit2(u,t,d) ==
      f:= gcd(u,trace(t,d,u))
      f = 1 => "failed"
      degree u = degree f => "failed"
      [1,f,u quo f]

    trace(t,d,u) ==
      p:=modulus(t)
      d:= d - 1
      tt:=t
      while d > 0 repeat
        tt:= (tt + (t:=exptmod(t,p,u))) rem u
        d:= d - 1
      tt